Show simple item record

dc.contributor.authorFaundez-Zanuy, Marcos
dc.contributor.authorDiaz, Moises
dc.contributor.authorFerrer, Miguel Angel
dc.date.accessioned2024-11-29T11:56:57Z
dc.date.available2024-11-29T11:56:57Z
dc.date.issued2024
dc.identifier.citationFaundez-Zanuy M, Diaz M, Ferrer MA. Online signature recognition: a biologically inspired feature vector splitting approach. Cogn Comput. 2024;16:265-277. DOI: 10.1007/s12559-023-10205-9ca
dc.identifier.issn1866-9964ca
dc.identifier.urihttp://hdl.handle.net/20.500.12367/2848
dc.description.abstractThis research introduces an innovative approach to explore the cognitive and biologically inspired underpinnings of feature vector splitting for analyzing the significance of different attributes in e-security biometric signature recognition applications. Departing from traditional methods of concatenating features into an extended set, we employ multiple splitting strategies, aligning with cognitive principles, to preserve control over the relative importance of each feature subset. Our methodology is applied to three diverse databases (MCYT100, MCYT300, and SVC) using two classifiers (vector quantization and dynamic time warping with one and five training samples). Experimentation demonstrates that the fusion of pressure data with spatial coordinates (x and y) consistently enhances performance.ca
dc.format.extent13 p.ca
dc.language.isoengca
dc.publisherSpringer Natureca
dc.relation.ispartofCognitive Computation. 2024;16:265-277ca
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherBiometricsca
dc.subject.otherOnline signatureca
dc.subject.otherVector quantizationca
dc.subject.otherDynamic time warpingca
dc.subject.othere-Securityca
dc.titleOnline signature recognition: a biologically inspired feature vector splitting approachca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.identifier.doi10.1007/s12559-023-10205-9ca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint