Mostra el registre parcial de l'element
Mood state detection in handwritten tasks using PCA–mFCBF and automated machine learning
dc.contributor.author | Nolazco Flores, Juan Arturo | |
dc.contributor.author | Faundez-Zanuy, Marcos | |
dc.contributor.author | Velázquez-Flores, O. A. | |
dc.contributor.author | Del-Valle-Soto, Carolina | |
dc.contributor.author | Cordasco, Gennaro | |
dc.contributor.author | Esposito, Anna | |
dc.contributor.other | TecnoCampus. Escola Superior Politècnica (ESUPT) | |
dc.date.accessioned | 2023-06-22T11:35:37Z | |
dc.date.available | 2023-06-22T11:35:37Z | |
dc.date.issued | 2022 Feb 21 | |
dc.identifier.citation | Nolazco Flores JA, Faundez-Zanuy M, Velázquez-Flores OA, Del-Valle-Soto C, Cordasco G, Esposito A. Mood state detection in handwritten tasks using PCA–mFCBF and automated machine learning. Sensors. 2022 Feb 21;22(4):1686. DOI: 10.3390/ s22041686 | ca |
dc.identifier.issn | 1424-8220 | ca |
dc.identifier.uri | http://hdl.handle.net/20.500.12367/2198 | |
dc.description.abstract | In this research, we analyse data obtained from sensors when a user handwrites or draws on a tablet to detect whether the user is in a specific mood state. First, we calculated the features based on the temporal, kinematic, statistical, spectral and cepstral domains for the tablet pressure, the horizontal and vertical pen displacements and the azimuth of the pen's position. Next, we selected features using a principal component analysis (PCA) pipeline, followed by modified fast correlation-based filtering (mFCBF). PCA was used to calculate the orthogonal transformation of the features, and mFCBF was used to select the best PCA features. The EMOTHAW database was used for depression, anxiety and stress scale (DASS) assessment. The process involved the augmentation of the training data by first augmenting the mood states such that all the data were the same size [...]. | ca |
dc.format.extent | 22 p. | ca |
dc.language.iso | eng | ca |
dc.publisher | MDPI | ca |
dc.relation.ispartof | Sensors. 2022 Feb 21;22(4):1686 | ca |
dc.rights | © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | ca |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.other | AutoML | ca |
dc.subject.other | Data augmentation | ca |
dc.subject.other | Negative mood states recognition | ca |
dc.subject.other | Feature extraction | ca |
dc.subject.other | SVM | ca |
dc.title | Mood state detection in handwritten tasks using PCA–mFCBF and automated machine learning | ca |
dc.type | info:eu-repo/semantics/article | ca |
dc.description.version | info:eu-repo/semantics/publishedVersion | ca |
dc.rights.accessLevel | info:eu-repo/semantics/openAccess | |
dc.embargo.terms | cap | ca |
dc.identifier.doi | 10.3390/s22041686 | ca |
Fitxers en aquest element
Aquest element apareix en la col·lecció o col·leccions següent(s)
-
Articles [17]