Exploiting Spectral and Cepstral Handwriting Features on Diagnosing Parkinson’s Disease
Data de publicació
2021-10-22DOI
10.1109/ACCESS.2021.3119035
Resum
Parkinson’s disease (PD) is the second most frequent neurodegenerative disease associated with several motor symptoms, including alterations in handwriting, also known as PD dysgraphia. Several computerized decision support systems for PD dysgraphia have been proposed, however, the associated challenges require new approaches for more accurate diagnosis. Therefore, this work adds spectral and
cepstral handwriting features to the already-used temporal, kinematic and statistics handwriting features.
First, we calculate temporal and kinematic features using displacement; statistic features (SF) using displacement, and horizontal and vertical displacement; spectral(SDF) and cepstral(CDF) using displacement, horizontal and vertical displacement and pressure. Since the employed dataset (PaHaW) contains only 37 PD patients and 38 healthy control subjects (HC), then as the second step, we augment the percentage of the smaller training set to equal the larger. Next, we augment both classes to increase the training patient’s data and added random Gaussian noise in all augmentations. Third, the most relevant features were selected using the modified fast correlation-based filtering method (mFCBF). Finally, autoML is employed to train and test more than ten plain and ensembled classifiers. Experimental results show that adding spectral and cepstral features to temporal, kinematics and statistics features highly improved classification accuracy to 98.57%. Our proposed model, with lower computational complexities, outperforms conventional state-of-the-art models for all tasks, which is 97.62%.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Paraules clau
Parkinson’s disease, dysgraphia, online handwriting, feature extraction, data augmentation, autoML
Pàgines
12 p.
Publicat per
IEEEAccess
Aquest element apareix en la col·lecció o col·leccions següent(s)
- Articles [3]
Els següents fitxers sobre la llicència estan associats a aquest element:
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/4.0/