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Abstract 
Advantageous property of behavioural signals (e.g. handwriting), in contrast to morphological ones (e.g. iris, fingerprint, 
hand geometry), is the possibility to ask a user to perform many different tasks. This article summarises recent findings 
and applications of different handwriting/drawing tasks in the field of security and health. More specifically, it is focused 
on on- line handwriting and hand-based interaction, i.e. signals that utilise a digitizing device (specific devoted or general-
purpose tablet/smartphone) during the realization of the tasks. Such devices permit the acquisition of on-surface 
dynamics as well as in-air movements in time, thus providing complex and richer information when compared to the 
conventional “pen and paper” method. Although the scientific literature reports a wide range of tasks and applications, in 
this paper, we summarize only those providing competitive results (e.g. in terms of discrimination power) and having a 
significant impact in the field. 
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Introduction 

Signature/handwriting recognition can be split into two 
cat- egories: off-line and on-line [1–3]. In the former case, 
just the result of the signature/writing (i.e. static 2D 
image) is known because it is acquired after the 
realization (writing) process. On the other hand, online 
signature/writing consists of acquiring the signal during 
the realization process. This provides a large set of raw 
data: 

– absolute spatial coordinates (x, y) of the tip of the pen, 
– pressure exerted on the surface—of course, this value 

is zero when the pen is not touching the surface, 
– angles of the pen: altitude and azimuth, 
– time stamp of the moment where the previous values 

have been acquired. 
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When pressure is different from zero, the movement is 
con- sidered to be on-surface and the whole set of 
information described before is acquired. When pressure 
is zero, the movement is considered to be in-air. If the 
distance from the tip of the pen to the paper surface is 
below one centimetre (depending on the specific 
acquisition tool) the whole set of information described 
before is acquired with the unique exception of pressure, 
which is always zero. A deeper dis- cussion linked with the 
in-air movement can be found in our previous works [1, 3, 
4]. 

From a pattern recognition perspective, off-line 
systems deal with image processing, while on-line ones 
with time- sequence signal processing. However, it must 
be argued that, so far, some solutions developed for off-
line systems have been adopted to on-line ones and vice-
versa [5]. An emerging and very interesting aspect 
discussed in this article deals with the possibility to sign 
and/or write and in general interact with the finger on a 
screen of a mobile device (e.g. smartphone or tablet) [6]. 

Four components are embedded in the signing/writing/ 
drawing process [6, 7]: 

– The physiological component is constituted by the writ- 
ing system which includes muscles, arm, wrist, hand, 
fingers, etc.; 
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– The learned component deals with personalization, 
schooling, culture, habits, etc.; 

– The cognitive one can be referred to mental abilities 
(learning, thinking, reasoning, remembering, problem- 
solving, decision-making, and attention); 

– The contour component: given the above, some noise 
can be introduced due to the writing device, posture, 
spatial constraints, emotional state, etc. 

Variations of these components are reflected into 
variations of the acquired signal and represent the intra-
writer vari- ability. The variability is then, typically, 
observed over short (day-to-day or trial-to-trial basis) or 
long periods (months, years, etc.). In the former case, the 
contour component has a major role on the overall 
variability [6], while in the latter one all the different 
components could have a significance and different 
impact [7]. It is quite intuitive that the hand- writing signal 
can be used for multiple purposes: handwrit- ing 
recognition [8], script recognition, drawing recogni- tion 
[9], health evaluation, assessment of specific learning 
disabilities, gender recognition [10], fatigue detection 
[11], emotional state recognition [12], forensic studies, 
writer identification (based on signature or handwriting) 
and sig- nature/writer verification. 

However, handwriting does not only include the writing 
of cursive/capital letters or scripts, in fact drawings can be 
considered too. More specifically, the different 
handwriting tasks can be classified as [7]: 

1. Simple drawing tasks: straight lines, circles, spirals, 
meanders, swipes, etc. These tasks are also referred to 
as graphomotor elements, because they represent the 
basic building blocks of letters; 

2. Simple writing tasks: nonsense words, single 
characters, single tap, etc.; 

3. Complex tasks: they simultaneously involve motor, 
cognitive, and functional issues (e.g. copying tasks, the 
clock-drawing task, etc.). 

It has been demonstrated so far that, given a specific clas- 
sification problem (e.g. writer identification, health status 
assessment, etc.), a specific task is more profitable than 
oth- ers. In fact, intuitively, given a specific writing task, 
one of the previous mentioned components could have a 
different impact on the acquired signal. 

Handwriting is a cognitive task in which synchronized 
neuromotor orders are fired from the cortex to carry out 
the planned action [13]. The knowledge of these cognitive 
tasks performed by human brain is a milestone in the 
develop- ment of computerized models to simulate the 
human thought process in complex situations where the 
answers may be ambiguous and uncertain. In fact, 
cognitive systems include self-learning technologies that 
use data mining, pattern 

recognition and natural language processing (NLP) to mimic 
the way the human brain works. 

Automatic handwriting-based analysis can be based on 
many different tasks performed by using a pen-based tool. 
These tasks are described and discussed in detail in section 
2 along with a review of several relevant scientific works. 
Nev- ertheless, many finger-based interactions, related to 
hand- writing, can occur on a wide set of touchscreen 
devices (e.g. smartphone, tablet, etc.): Section 3 reports a 
review of the most interesting results. Section 4 presents a 
re-organization and a discussion of all the different tasks 
(previously dis- cussed) in terms of applications (security 
and/or health) also according to an effort-based taxonomy. 
Section 5 concludes the article. 

 

Handwritten Tasks 

Signature‑Based Analysis 

 
Figure 1 shows an example of a signature acquired with a 
Wacom Intuos digitizing tablet. The blue colour represents 
the on-surface movement, while the red colour the in-air 
one. The relevance of the in-air movement has been 
clearly described in [2, 3, 14]. Handwritten signature is the 
most widespread behavioural biometric trait: it has a 
socially accepted role as a proof of identity as well as a 
demonstra- tion of the willing of the writer to accept 
the content of the document. For this reason, it has been 
extensively ana- lysed [15]. Signature is adopted on a daily 
basis for commer- cial and banking payments/transactions 
and in many other sectors (e.g. express courier, education, 
healthcare, etc.). Several international competitions exist 
that facilitate a fair comparison between competing 
algorithms [8]. 

Although it is not massively used in health applications 
sometimes interactions appear between security and 
health, such as in documents signed by a user suffering from 
demen- tia or some other temporary/permanent health 
problem that can invalidate the signature. An example has 
been reported in [16]. The interesting aspect is that 
usually, security and health implications are present both 
together and cannot be considered as isolated application 
fields [16]. 

Micrographia (the abnormal progressive reduction in 
amplitude of letters) has been observed in the off-line and 
on-line signing tasks as well as in sentences of patients with 
Parkinson’s disease [17, 18]. Signature position with 
respect to a dotted line (on or below) and other cognitive 
functions have been investigated, and it has been 
observed that it may be a marker of vulnerability of 
visuospatial abilities [19]. 

Recently, it has been demonstrated that, when dealing 
with on-line writing, velocity-related features play a very 
crucial role [20, 21]. A similar result has been observed 
on signatures when considering features related to the 
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Fig. 1 Online signature: the 
product is depicted on the left 
side, the right side of the figure 
contains associated informa- 
tion about horizontal/vertical 
movement and pressure 
pattern (the blue colour 
represents the on-surface 
movement, while the green 
colour the in-air one) 
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Sigma-Lognormal model coupled with a Bagging CART 
classifier [22]. In this case, the approach has been able to 
discriminate dementia affected users from the healthy 
coun- terpart with 3% of Equal Error Rate (ERR), however 
the main limitation of this work is a reduced dataset. A 
more recent study has investigated the relation between 
signatures of persons with Alzheimer’s disease (AD) and 
those writ- ten by age-matched healthy controls (HC) [23]. 
In this case, authors adopted a simple statistical evaluation 
on parameter features evaluated upon dynamic raw data 
(e.g. stroke dura- tion, stroke amplitude, peak vertical 
velocity, average nor- malized jerk, etc.) and categorized 
signatures within three classes: text based, mixed, or 
stylized. No significative dif- ferences were observed apart 
from an association between increased feature variability 
and increased dementia sever- ity for stylized and mixed 
signatures. Signatures were also acquired after one year 
during which a hard decline was observed in the cognitive 
status: signature features remained stable. Authors 
conclude the work by stating that demen- tia has a 
residual impact on signature formation. A simi- lar finding 
is reported by Reiner et al. [24] who acquired two samples 
of signature and a spontaneous writing from 36 persons 
with Mild Cognitive Impairment (MCI) diag- nosis and 38 
HC. Cognitive functions in decision-making were also 
evaluated: while a significant correlation between 
spontaneous writing and neuropsychological test results 
was observed, signature deterioration did not appear to be 
corre- lated with the level of cognitive decline. However, it 
must be underlined that the style of the signature plays a 
role, in fact the speed for flourish signatures is higher than 
that of text- based ones, moreover muscles involved in the 
movement are more active in the generation of the flourish 
ones [25]. These results call for further and extended 
research. 

The relation between handwritten signatures and per- 

sonality traits has been evaluated considering static and 

dynamic features. It is interesting to report that aspects as 
gender and personality can be predicted effectively using 
signature velocity characteristics [26]. 

On-line signatures have been also used (coupled with 
speech) to distinguish among three psychophysiological 
states: normal, drowsiness and alcohol-intoxicated [27]. 
Dynamic and static features were adopted to test 
Bayesian hypothesis reporting an overall average error of 
14.5%. 

Unfortunately, very few works provide a comparison of 
performance when adopting writing, drawing and signing 
tasks. From an intuitive point of view, handwriting should be 
able to provide a wider range of information. More 
evidence is reported in the following paragraphs. 

Text‑Based Recognition Analysis 

 
An example of a cursive handwriting could be seen in Fig. 2. 
Several security applications based on handwritten text 
have been proposed, such as [8] for capital letters or [28] 
for cur- sive drawing on a whiteboard, which is not a very 
usual writing scenario. However, they have not attracted 
too much attention of the scientific community. Especially 
when com- pared to signatures. 

Drawing‑Based Analysis 

 
In security applications drawing analysis has attracted 
some attention especially in graffiti performed by gangs. 
Gangs use specific clothing, brands, symbols, tattoos, and 
graffiti to identify their group and interchange messages. 
Graffiti are any type of public markings that may appear in 
forms that range from simple written words to elaborate 
wall paint- ings [29]. However, due to its nature, they are 
off-line. Pre- liminary results in online recognition show a 
potential to identify people using some drawings [9]. 
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Fig. 2 Text “Have a nice day!” 
written in cursive letters: the 
product is depicted on the left 
side, the right side of the figure 
contains associated informa- 
tion about horizontal/vertical 
movement and pressure 
pattern (the blue colour 
represents the on-surface 
movement, while the green 
colour the in-air one) 
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Generally, in the area of diagnostics in medical context, 
drawings are widely used. Some common drawings and 
their potential usage in medical field are mentioned 
below. 

Pentagon Test 

 
The test is used, e.g. in the Mini-subject classification Men- 
tal State Examination (MMSE) to assess cognitive impair- 
ment [30]. It consists of copying a drawing, which includes 
two pentagons overlapping into a rhombus (see 3). It is of 
interest to report that it has been adopted to differentiate 
dementia associated with Lewy Body (DLB) from Alzhei- 
mer’s disease (AD). To the aim, visual parameter features 
such as number of angles, distance/intersection, closure/ 
opening, rotation and closing-in were considered with an 
artificial neural network classifier [31]. Park et al. [32] have 
recently adopted a mobile device to acquire timestamps, x-
y 

coordinates and touch-events. In this case, raw data were 
processed by means of a U-Net (a convolutional network) 
to automatically segment angles, distance/intersection 
between two drawn figures, and closure/opening of the 
drawn figure contours. Moreover, tremor was also 
evaluated. It is worth noting that the evaluation of these 
parameters is associated with a specific disease scaling 
(interested readers can refer to [31]). Errors which occur 
in the copying/drawing tasks can be related to damages of 
the brain: it has been observed that the score connected 
to the pentagon copy task is associ- ated with parietal grey 
matter volume and not with frontal, temporal, and 
occipital ones [33]. 

Clock‑Drawing Test (CDT) 

 
The test can be utilized as a precursory measure to indi- 
cate the likelihood of further/future cognitive deficits. 
It 

 

Fig. 3 Pentagon test: the 45 
product is depicted on the left 
side, the right side of the figure 40 
contains associated informa- 35 

tion about horizontal/vertical 
movement and pressure pattern 30 
(the blue colour represents the 25 

on-surface movement, while the 
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Fig. 4 Clock-drawing test: the 
product is depicted on the left 
side, and the right side of the 
figure contains associated infor- 
mation about 
horizontal/vertical movement 
and pressure pattern (the blue 
colour represents the on-
surface movement, while the 
green colour the in-air one) 
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is used, e.g. in the Addenbrooke’s Cognitive Examination 
– Revised (ACE-R) test [34] (see Fig. 4). The use of an on-
line acquisition tool gives the possibility to evaluate the 
process of the clock construction and not only the 
final drawing. In the last decade digital on-line versions of 
the CDT have been considered [35]. Harbi et al. [36] used 
a set of features extracted at stroke level (evaluated upon 
the set of on-line raw data) and an SVM (Support vector 
machines algorithm) to identify connected components 
in normal and abnormal drawings. The same authors also 
proposed a multi-expert approach [37]. More specifically 
two systems were developed: the first one considered 
static images obtained by plotting the x-y coordinates and 
derived a set of static features evaluated by means of a 
CNN. The same CNN provided a final decision. The sec- 
ond system was based on the x-y coordinates 
sequences. 

It was showed that the combination of both systems was 
able to outperform individual classifiers in the 
dementia vs healthy subject classification task. Muller et 
al. [38] investigated the diagnostic value of a digital 
version of the CDT by comparing it to the standard pencil-
paper version. To the aim, 20 patients with early 
dementia, 30 with MCI and 20 HC were considered. It was 
observed that in-air time provided by the digital version 
is able to provide a higher diagnostic accuracy (MCI vs HC) 
than the use of the traditional test. 

 
House Drawing Copy 

 
This test is used for identification of Alzheimer’s dis- 
ease [39, 40] (see Fig. 5). 

 

Fig. 5 House drawing test: the 
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Archimedes Spiral and Straight Line (Drawing 

Between Points) 

 
These tasks are useful to support diagnosis of, e.g. Parkin- 
son’s disease [41, 42], Huntington’s disease [43], essential 
tremor [44–47], developmental dysgraphia [48], fatigue 
[11], or brachial dystonia [49]. See Figure 6. In the case of 
the Archimedes spiral acquisition and straight lines, the 
par- ticipants can have a printed spiral on a sheet of paper 
and a couple of dots to be connected and they are asked 
to trace it by a pen without touching the spiral neither the 
bars (see Fig. 7). Or, the spiral is shown them on a 
template and they are asked to replicate it on a blank 
sheet of paper. 

Overlapped Circles (Ellipses) 

 
It can be used for quantitative analysis of schizophrenia or 
Parkinson’s disease [21, 50]. See Fig. 8, which represents 
some simple kinematic features that can be used for an 
effec- tive diagnosis. 

Spring Task (Connected l or Loops) 

 
Several variants exist, such as the connected loops (see 
Fig. 9), inverted connected loops, connected f, etc. This 
task is interesting to check the skills to produce rhythmic 
movements, as well as sudden changes of direction (start- 
stop-start sequences), useful to evaluate problems to 
initiate movement [51]. 

Rey‑Osterrieth Complex Figure Test (ROCF) 

 
ROCF consists of copying a complex drawing [52]. It is fre- 
quently used to further explain any secondary effect of 
brain injury in neurological patients, to test for the 
presence of 

dementia, or to study the degree of cognitive development 
in children. In this task patients have to memorize an image 
and later they have to replicate it without looking at the 
example. Rey–Osterrieth complex text is depicted in Fig. 
10. 

Bank‑Check Copying 

 
It is, as for most cases of copying tasks, a functional writing 
task. To properly copy the bank check (Fig. 11), the user 
should be able to identify the source and corresponding 
tar- get fields, to locate them and to write the correct 
content. The single movement and the corresponding 
stroke could be correct, but the task must be evaluated in 
its total exe- cution. Patients affected by dementia could 
result in poor execution producing simplified figures, 
misplacement of the text, modifications in spatial 
relationships among strokes, etc. [53]. Considering the 
example reported in Fig. 11, in-air movements which reveal 
the action of locating the source and the corresponding 
target field performed by a mild stage dementia patient 
can be clearly observed. 

Trail‑Making Test (TMT) 

 
The test is composed of two parts, in part A the user is 
required to connect a sequence of consecutive numeric 
tar- gets (Fig. 12), in part B numbers and letters must be 
alter- nated in progressive order (i.e. 1-A, 2-B, etc.). The 
test involves attentional skills, motor planning, and 
working memory [54]. This test is adopted for a wide 
range of cases of brain dysfunction [55]; moreover, 
normative data are available for several countries 
according to relevant factors such as age, education level 
and gender [55]. Patients must complete the task as 
quickly as possible, if an error occurs then the examiner 
requests to correct it: this increases the total duration 
(time) thus reducing the final score assigned 

 

Fig. 6 Archimedes spiral: the 
product is depicted on the left 35 
side, the right side of the figure 
contains associated information 30 
about horizontal/vertical move- 
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Fig. 7 a) Archimedes spirals 
and straight lines performed by 
a subject with essential tremor 
on a sheet of paper; b) recon- 
struction of the first straight 
line (information about the 
pressure is missing) 
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by the examiner (which is typically based only on the time 
spent). The test is asked to be performed without lifting 
the pen from the paper/tablet, however a wide set of in-air 
move- ments can be observed in the example reported in 
Figure 12 revealing the need for a mild dementia patient, 
to ideally retrace the path already written to be able to 
move forward from an error or hesitation point. The 
equivalence between the standard (pencil-paper) and the 
digital (pen-tablet) ver- sion of the TMT has been recently 
verified [56]. 

It is of interest to report that crossed pentagons, TMT 
and CDT tests have been recently adopted and compared 
within the context of handwriting processing to discrimi- 
nate between HC, MCI and AD [57]. To the aim the 
following features were considered: pressure, numbers 
of segments, velocity, acceleration, jerk, in-air and on- 
the-pad total time. Accuracy of pentagons, TMT-partA, 
TMT-partB and CDT were, respectively, of 66.2%, 69.0%, 
63.3% and 67.6%. The combination of all tasks was able to 
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Fig. 8 Overlapped circles: the 
product is depicted on the left 14 
side, the right side of the figure 
contains associated information 12 
about horizontal/vertical move- 
ment and pressure pattern 10 
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provide increased performance thus revealing they have a 
certain degree of complementarity. 

 
Cancellation Test of Digits 

 
These tasks are selective attention tests based on a can- 
cellation task. The patient is asked to find targets (e.g. the 
number 5 in the example in Fig. 13) within a short time 
constraint. So far, it has been reported that they are 
useful not only to discriminate AD and HC, but also to 
monitor the evolution of the cognitive decline [58]. 
Clinicians typically consider errors performed by patients; 
however, a digitized version of the test is also able to 
provide information related to the searching pattern (in air 
movement in Fig. 13). 

Keystroke/Tactile/Touch Analysis 

Keystroke dynamics have been extensively used for iden- 
tification aims on physical keyboards [59–61] and recently 
on virtual keyboards when considering smartphones and 
tablets [62]. In this last situation, a wider range of interac- 
tions can be considered including finger-swiping patterns 
drawing, touch-dynamics and, of course, signatures [6, 
63]. It is evident that aspects involved in handwriting/ 
signing described in the previous sections are not far 
from those involved in more general hand-based interac- 
tion tasks because they involve the same hand motor area 
within the brain [64]. So far it has been underlined that 
typewriting includes a cognitive phase, an associative 
phase and an autonomous phase [65]. 

 

 

Fig. 9 Spring task: the 
product is depicted on the left 
side, the right side of the figure 
contains associated 
information about 
horizontal/vertical movement 
and pressure pattern 
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Fig. 10 Rey-Osterrieth complex figure test 
 

 
Based on the previous observations, touch dynamics 

can be used also for health evaluation. However, it must 
be underlined that writing/drawing/signing and, more in 
gen- eral, interacting with a finger on a screen is different 
from using a pen/tablet system: dynamics as well as the 
final 2D drawing can be very different [6]. Main reasons 
are: 

– habits in using the pen instead of the finger and/or vice 
versa; 

– finger size compared to the pen’s one (in terms of 
contact point); 

– non-rigidity of the finger; 

– friction between the finger and the screen. 

It is worth noting that, so far, a useful tool for evaluating 
motor skills is finger-tapping, a test based on a special 
tool that allows to count the number of key taps within a 
given time interval (e.g. 30 seconds). This test is used for 

assessing the presence of bradykinesia, that is, an unnatu- 
ral slowness in initiating and carrying out simple voluntary 
movements [51, 66]. Other interesting tasks can be 
consid- ered. Iakovakis et al. [67] acquired fragmentary 
typing of short text on a touchscreen smartphone 
involving 18 PD patients and 15 HC. In this case features 
adopted were those of the typical key-stroke domain: hold 
times (time between the pressing and the releasing of a 
key), flight times (time between the releasing of a key and 
the pressing of the next one), etc. The adopted 
classification schema reported 0.82 and 0.81 of, 
respectively, sensitivity and specificity. Noyce et al. [68] 
adopted the following parameters for the PD vs HC 
classification: Kinesia Score (KS30) as, number of key taps 
in 30 seconds, Akinesia Time (AT30) as the mean dwell time 
on a key, Incoordination Score (IS30) as the variance of 
flight time between two consecutive keys and Dysmetria 
Scores (DS30) related to accuracy of key presses. It was 
observed that KS30, AT30 and IS30 were significantly able 
to discriminate PD patients from HC, moreover the same 
parameters were also correlated with UPDRS motor 
scores. Similar results have been obtained considering key 
hold time series and early PD patients [69]. Typing activity 
on smart- phones, independently from the text, has been 
also consid- ered [64]. In this last case, participants were 
requested to copy a randomly selected text for five 
minutes. The time sequence of flight times was used to 
compute parameter features to be fed to a set of different 
classifiers: a sensitiv- ity/specificity of 0.81/0.81 has been 
reported in the binary PD/HC classification task. A very 
recent work has investi- gated and compared different 
touch gestures on the same device: flick, drag, 
handwriting, pinch, tap, and alternating finger tapping 
[70]. A wide set of spatial, velocity, time and pressure-
based features was considered with the aim to dis- 
tinguish between early PD patients and HC. The following 
results were observed: PD subjects resulted in less-
efficient finger trajectories, less stable speed, less stable 
pressure and, higher tremor than HC. Touch gestures 
and typing 

 
Fig. 11 Bank-check copying 
(the black colour represents 
the on-surface movement, 
while the red colour the in-air 
one) 
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Fig. 12 Trail-Making Test (the black colour represents the on-
surface movement, while the red colour the in-air one) 

 

 
appeared to be complementary tasks and an analysis of 
each task reported drag gestures most performing for 
classifica- tion aims. The best performance was achieved 
by using all categories of features. Lipsmeier et al. [71] 
considered also finger tapping (recording all touchscreen 
events) within a set of many tests related to the use of a 
smartphone (sustained phonation, rest tremor, postural 
tremor, balance and gait). The study involved 44 PD and 
35 HC. The finger tapping appeared to be the less 
performing task, however it must be underlined that only 
intratap variability was considered as a feature. 

Problems in hand movements are often the first 
symptoms of neurological disorders, which do not include 
only PD, but also Essential Tremor (ET) and Huntington’s 
disease (HD) [72, 73]. On the other hand, dementia 
diseases, as for example Alzheimer Disease (AD), first 
result in cognitive rather than motor degradation. In fact, 
it is well-known that complex tasks including cognitive 
load (e.g. clock draw- ing and pentagons) are generally 
considered [7]. However also coping tasks can be 
considered. Van Waes et al. [65] requested to a set of 20 
young HC, 20 cognitively healthy elderly and 12 age-
matched elderly with mild cognitive impairment (MCI) or 
mild dementia due to AD to perform a typing copy task. 
Different performances were observed among the three 
groups. 

 

 
Fig. 13 Cancellation test of the digit ’5’ (the black colour represents 
the on-surface movement, while the red colour the in-air one) 

 
 

More in general, a comprehensive user analysis must 
involve the monitoring of multiple behavior including typ- 
ing, menu navigation, swipes, drawing and activity under- 
standing [74], [75]. Unfortunately, no works are still avail- 
able in this direction considering a mobile device, so that 
it can be considered an open field of research. Very few 
works are available demonstrating the possibility of using 
touch dynamics for emotion recognition by considering 
common unlock Android touch patterns [76] or typing on 
touchscreens [77]. 

 

Tasks Classification 

The results presented in this section are based mainly on 
our own quantitative and qualitative assessment of earlier 
works. According to our previous work [11], handwritten 
tasks can be classified into three categories: 

– Mechanical tasks—with no cognitive effort, this task 
can be performed without any heavy load because it is 
a repetitive movement that the user can do in an auto- 
matic way. The user is habituated to do it regularly in 
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her/his life. This is the case of the handwritten signa- 
ture, handwriting text in capital letters, and 
handwritten text in cursive letters. Usually, these kinds 
of tasks are quite straight forward and trivial. These 
kinds of tasks are quite frequent in the healthy 
population and find an important niche of applications 
in biometric recogni- tion of people (user 
identification and verification [2]). 

– Cognitive effort tasks—these tasks require some psy- 
chical effort to copy a complex drawing. In this case, 
the user requires a strategy to start the task. Some 
cog- nitive aspects are important because the user 
needs to know the parts of the drawing already done 
and the parts that are missing. This kind of task is 
especially challenging for those people affected by 
cognitive impairment, such as dementia, mild cognitive 
impair- ment, etc. This is the case of the house drawing 
task, pentagon drawing test, clock-drawing test, 
Osterrieth complex figure test, trail-making test, 
cancellation test of a specific digit and Bank-check 
copying. The clock- 

drawing test is a special case, because no model is pre- 
sented prior or during the task. It has to be imagined 
during the performance. 

– Fine motor control tasks—these tasks do not require a 
heavy cognitive load as the drawing itself is simple and 
straightforward to understand and memorize at a 
glance. However, good motor control is required to 
perform the task. This is the case of the Archimedes 
spiral drawing test, straight line test, spring drawing 
test, and concentric circle drawing test. 

Table 1 summarizes the best tasks for each application 
purpose. This table is focused on on-line acquired signals. 
Although the table presents security and health applica- 
tions separately, it is important to point out that the same 
signal can reveal identity and pathologies. Thus, privacy is 
another interesting research topic that involves both 
security and health [39]. 

 

 
Table 1 Summary of tasks classified by applications in the field of security and health (each task is classified into one of these three categories: 
(M)—mechanical task, (C)—cognitive task, (F)—fine motor control task) 

 

Tasks Security (user identification and verification) Health 

Signature (M) classical application with increasing popularity in online 
cases (supermarkets, post offices, etc.) [1, 2, 5, 6, 78] 

 

personality assessment [26] 

international competitions exist to compare different 
algorithms [80–82] 

although pathologies can be detected (e.g. Alzheimer’s 
disease [16, 22, 24, 26, 79]) this is not a popular task in 
health applications requiring more investigation due 
to controversial results [23] 

Handwriting (M) capital letters [8] Parkinson’s disease [21, 51, 83–85] 

 cursive letters [28] Huntington’s disease [43] 

 letter level writer identification [86] developmental dysgraphia [87, 88] 

 gender recognition [10, 89–93] attention deficit hyperactivity disorder [94] 

 writer identification [95–98] autism spectrum disorder [99] 

 competitions in writer identification [90] obsessive-compulsive disorder [100] 

 competitions in gender identification [101] fatigue [11] 

  depression, stress, etc. [12], although better results are 
found using drawing tasks 

drug abuse, such as Marijuana [102], alcohol [103], 
caffeine [104] 

Drawing (C or F) graffiti’s author identification (offline) [29, 105] Pentagon test (C) 

 preliminary results in on-line cases [9] Alzheimer’s disease [40] 

 Clock drawing test (C) 

Alzheimer’s disease [35, 38, 40, 106] 

mild cognitive impairment [40] 

mild major depressive disorder [107] 

House drawing (C) 

Alzheimer’s disease [40, 108] 

mild cognitive impairment [40, 108] 

hypoxemic patient analysis [109] 

fatigue [11] 
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Table 1 (continued) 

Tasks Security (user identification and verification) Health 
 

Archimedes spiral, meanders and straight lines (F) 

Parkinson’s disease [41, 42] 

Huntington’s disease [43] 

essential tremor [44–47] 

developmental dysgraphia [48] 

fatigue [11] 

brachial dystonia [49] 

Single or overlapped circles (F) 

Huntington’s disease [43] 

schizophrenia [50] 

Spring task (F) 

fatigue [11] 

developmental dysgraphia [48, 110] 

schizophrenia [50, 111] 

bipolar disorder [111] 

Parkinson’s disease [51] 

Huntington’s disease [43] 

Rainbow task (F) 

developmental dysgraphia [48, 112] 

Saw task (F) 

developmental dysgraphia [48] 

Rey-Osterrieth complex figure test (C) 

mild cognitive impairment [113] 

Alzheimer’s disease [114] 

Multiple geometrical figures copying (C) 

dementia [53] 

Trail making test (C) 

Alzheimer’s disease [57] 

Cancellation test (C) 

Alzheimer’s disease [58] 

Tree drawing (C) 

Alzheimer’s disease [115] 

mild cognitive impairment [115] 

 

Conclusions 

Handwriting is probably one of the most complex tasks 
that human beings can perform. In addition to being 
considered a personal behavioral trait (suitable for 
biometric recognition in security applications), it can also 
reveal health aspects (when analyzing its quality). 

A large amount of scientific literature exists in both appli- 
cation fields: security and health. However, there is no 
uni- fied activity to be performed by hand writers. 
Depending on the specific application field, there are 
some tasks that can unveil richer information than others. 
Thus, we have tried to systematically review the existing 
tasks and applications with the goal to serve as a guide for 
presenting the main alternatives and the topics where 
they have succeeded. 

On the first level, we can classify the tasks into three 
categories: signature, handwriting (cursive or capital let- 
ters), and drawings, being the latest one being richer in 
possibilities. 

On the second level, we can classify the tasks into three 
different categories according to the specific skills 
required to perform the task: mechanical, cognitive effort 
and fine motor control. This second level of tasks 
classification is mainly relevant for health applications. 
However, contrary to the first classification, these are not 
disjoint sets, as each task requires some amount of effort 
from the other classes. Thus, it just depicts the 
predominant effort. 

While large number of possible tasks exists, one 
research goal to be addressed is to find the best tasks for 
each applica- tion: those which require a short realization 
time and provide 
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good discrimination capability (for instance, to 
differentiate essential tremor from Parkinson’s disease). 

We forecast new potential applications in the future 
based on online handwriting, especially in health. We 
encourage scientific community to test several 
handwriting tasks in order to find the optimal one. This 
paper summarizes the main successful ones and can serve 
as a potential task cata- logue to explore when studying 
new or existing problems. 
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