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Abstract
This research introduces an innovative approach to explore the cognitive and biologically inspired underpinnings of feature 
vector splitting for analyzing the significance of different attributes in e-security biometric signature recognition applications. 
Departing from traditional methods of concatenating features into an extended set, we employ multiple splitting strategies, 
aligning with cognitive principles, to preserve control over the relative importance of each feature subset. Our methodology is 
applied to three diverse databases (MCYT100, MCYT300, and SVC) using two classifiers (vector quantization and dynamic 
time warping with one and five training samples). Experimentation demonstrates that the fusion of pressure data with spatial 
coordinates (x and y) consistently enhances performance. However, the inclusion of pen-tip angles in the same feature set 
yields mixed results, with performance improvements observed in select cases. This work delves into the cognitive aspects 
of feature fusion, shedding light on the cognitive relevance of feature vector splitting in e-security biometric applications.

Keywords Biometrics · Online signature · Vector quantization · Dynamic time warping · e-Security

Introduction

Signature is one of the most widely used biometric traits 
for e-security, as it is based on “something you can do” [1, 
2]. One of its main advantages is that the user can change 
their signature if it is compromised, which is unfortunately 
impossible with most other biometric traits such as the face, 
speech, and iris. Additionally, signature authentication has 
a long tradition of centuries in legal contracts, paintings, 
and other fields and can also play an essential role in health 
assessment [2, 3]. Several handwritten tasks can be used for 
signature recognition [4].

On-line biometric recognition can operate in two different 
ways:

a) Identification (1:N): The system compares the signature 
provided by the user with the N models stored in the 

database of N users. The model that best matches the 
input signature is used to identify the user.

b) Verification (1:1): A user provides their signature, and 
the system attempts to determine if they are a genuine 
or forged user by verifying their claimed identity. Some 
databases contain two types of forgeries, known as ran-
dom and skilled. In the latter case, the forger is attempt-
ing to imitate the genuine signature, while in the former 
case, the forger is using their signature as a replacement 
for the genuine signature.

Online signature is probably the most popular behavioral 
trait for biometric recognition of people. Many individu-
als regularly sign documents, contracts, and other legal or 
financial papers, both in physical and digital formats. In 
addition, signature is the unique biometric trait that can be 
replaced (changed) if compromised. This is not possible or 
extremely difficult with other traits such as fingerprint face, 
and speech. It is based on a large set of techniques applied 
in a broader field known as pattern recognition.

Figure 1 depicts the general pattern recognition scheme. 
It consists of:

1. The acquisition of a signal from the real world, usually 
by means of a digitizing tablet, smartphone, etc.
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2. A feature extraction algorithm can extend the origi-
nal set of features the digitizing device provides. An 
example is the popular delta and delta-delta parameters. 
These parameters are commonly used in various signal 
processing applications and are particularly useful for 
capturing the temporal changes or differences between 
consecutive values in a sequence. By adding delta 
and delta-delta parameters, the algorithm can provide 
additional information that characterizes the dynamic 
aspects of the signature, thereby enhancing the discrimi-
native power and accuracy of the recognition system.

3. A matching algorithm that obtains a score (or a distance) 
measure that measures the matching degree between a 
pre-existing signature acquired during user enrollment 
and testing signature. Using the enrolment signatures, 
the computer works out a model usually stored in a data-
base, card, etc.

4. Considering the score or distance value provided by the 
matching step, a decision is made, which is usually an 
“accept/reject the user” (verification application or 1:1 
comparison) or the “identity” of the author of the testing 
signature (identification application or 1:N comparison, 
where N is the number of users contained in the data-
base).

Biometric Features Fusion

When dealing with extracted feature vectors, the goal is to 
combine the different measurements in order to improve the 
accuracy of the decision. Several options exist, performing 
fusion at four different levels [5]:

1. Sensor level:
At this level, the digital input signal is the result of sens-
ing the same biometric characteristic with two or more 
sensors. This first level is not usual in the online signature 
acquisition, except for online and offline signature acqui-
sition. An online signature is acquired through a digitized 
tablet with paper on its top and an ink pen. Instead, an 
offline signature is obtained by scanning the signature 
produced on the sheet of paper. However, the goal of this 

combination is more focused on comparing online and 
offline systems than on the combination itself. To this 
end, simultaneous collection of offline and online data 
is needed. An example can be seen in the BiosecurID 
database [6]. In Galbally et al. [7], the authors combined 
online and enhanced offline data in separate automatic 
signature verifiers, which were combined at score level. 
A different strategy was proposed by Radhika and Gopika 
[8], where image-based and sequence-based techniques 
were applied to extract features of signatures to be com-
bined in a single classifier.
Another type of work depends on the digitizers used. In 
some real applications, different tablets, smartphones, 
or PDAs can be used to collect and verify signatures. A 
proposal for sensor interoperability in signature verifi-
cation can be seen in Alonso-Fernandez et al. [9]. The 
authors proposed an enrollment strategy using two tablet 
PC. In Tolosana et al. [10], a data preprocessing stage is 
highlighted to cope with the verification of signatures 
acquired in mobile and desktop scenarios.
2. Feature level:
This level implies obtaining an extended feature set by 
applying several algorithms on the basic feature set pro-
vided by the digitizing tablet, which normally is lim-
ited to five features: spatial coordinates (x, y), pressure 
(p), angles (azimuth, altitude). Among the most popu-
lar extended features are the first and second deriva-
tives, delta and delta-delta parameters. This is a popular 
approach in speaker recognition [11, 12] and speech rec-
ognition [13] and signature recognition [14].
This combination strategy is usually done by concatenat-
ing the feature vectors extracted by each feature extractor. 
This yields an extended-size vector set.
Fifteen feature fusion proposals using spatial and pressure 
features were given by Parziale et al. [15]. They assessed 
the impact of each fusion with a standard and a stability-
modulated DTW. In Diaz et al. [16, 17], a feature-level 
combination was carried out. The authors found good 
results by combining the position and pressure of a new 
set of features based on the movement of a robotic arm 
at the feature level. On the other hand, handcrafted and 

Fig. 1  General pattern recogni-
tion system
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deep learning–based features were combined at the fea-
ture level [18]. The authors found that fusion eliminates 
the shortcomings of the corresponding group of features 
by complementing one another. Next, in Vorugunti et al. 
[19], a set of standard statistical-based features and deep 
representations from a convolutions auto-encoder were 
fused. The authors achieve competitive performance in 
few-shot learning scenarios.
While combining vectors is a popular fusion approach, 
it has some drawbacks, such as limited control over the 
contribution of each component to the final result and 
an increase in complexity for classifier design and data 
requirements. Therefore, opinion and decision levels are 
commonly used in state-of-the-art data fusion for pat-
tern recognition. This allows for greater control over the 
fusion process and a better understanding of the contribu-
tion of each component to the final result.
3. Opinion level:
Fusing different biometric classifiers to achieve better 
performance is also known as confidence level fusion. 
This approach combines the scores provided by each 
matcher and the distance or similarity measure between 
the input features and the models stored in the database.
It is possible to combine several classifiers working with 
the same biometric characteristic or different ones alto-
gether, known as unimodal and multimodal fusion.
Before the fusion process can begin, normalization must 
be performed. For example, suppose one classifier pro-
duces similarity measures within the [0, 1] range and 
another produces distance measures within the [0, 100] 
range. In that case, two normalization steps must be 
taken:

1) Converting the similarity measures into distance 
measures or vice versa.

2) Standardizing the location and scale parameters of 
the similarity scores from each classifier.

  After normalization, several combination schemes 
can be applied [20].

  The combination strategies can be classified into 
three main groups:

  Fixed rules: In this case, all the classifiers have the 
same relevance. An example is the sum of the out-
puts of the classifiers. In Okawa [21], a simple sum 
of two outputs scores was used for the final score 
value in online signature verification. Independent 
and dependent warping strategies in DTW obtained 
the two individual scores. Competitive performances 
were obtained with three public online signature 
datasets: SVC2004 Task1/Task2 and MCYT-100.

  Trained rules: Differently, some classifiers should 
have more relevance to the final result. It is achieved 
through weighting factors computed using a training 

sequence. The most straightforward procedure when 
dealing with two classifiers with their respective 
opinions o1 and o2 is obtaining a combined opinion 
o = �o1 + (1 − �)o2 , where α is the weighting fac-
tor optimized by finding the highest accuracy for 
� ∈ [0, 1]

  An example of the combination of verification 
scores through a weighted mean can be seen in Fis-
cher and Plamondon [22]. They combined a well-
established verification using dynamic time warping 
with lognormal-based features with a string edit dis-
tance strategy. The performance was quite competi-
tive compared to several benchmark datasets.

  In a study conducted by Diaz et al. [17], they 
introduced a novel approach that combined stand-
ard features and robotic features at the score level, 
yielding the most optimal results as reported in their 
research article. Furthermore, their findings demon-
strated the superior performance achieved through 
the feature fusion strategy employed in this modal-
ity.

  Adaptive rules: The relevance of each classifier 
depends on the instant time. It is interesting for vari-
able environments, and it is a generalization of the 
previous rule: o = �(t)o1 + (1 − �(t))o2 , where �(t) 
is the weighting factor, which is variable in certain 
conditions.

  The most popular combinations are weighted 
sum, weighted product, and decision trees (based 
on if–then-else sentences).

4. Decision level:
The fusion of multiple classifiers is required at this level. 
Each classifier generates a decision, which is either an 
accepted/rejected decision for verification applications 
or the identity of the person or a ranked list with the most 
probable person on top for identification systems. In the 
latter case, the Borda count method [23] can be used to 
combine the outputs of classifiers. This method circum-
vents the mandatory score normalization for the opinion 
fusion level and assigns a score equal to the number of 
classes ranked below the given category.
However, one issue with decision-level fusion is the pos-
sibility of ties. At least three classifiers are necessary for 
verification applications, as two classifiers must agree 
to avoid ties. For identification scenarios, the number of 
classifiers must be higher than the number of classes, 
which is typically impractical. Consequently, this com-
bination level is typically used for verification scenarios.
A significant combination scheme at the decision level 
is the serial and parallel combination, also known as the 
“AND” and “OR” combinations. The “AND” combina-
tion enhances the false acceptance rate (FAR), while 
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the “OR” combination improves the false rejection rate 
(FRR). By simultaneously combining serial and parallel 
systems, it is possible to enhance both rates [24].
Existing proposals for online signature recognition that 
extend feature sets are based on the feature level, where 
new features are concatenated to form an extended fea-
ture set. This paper will investigate various combination 
strategies at the opinion level to better understand each 
feature’s contribution to the final accuracy. More specifi-
cally, our proposal allows us to determine the relevance 
of pressure and pen-tip angle information in e-security 
biometric application.

Experimental Setup

Database

We have used two different databases in our experimental 
section:

MCYT database: We utilized the MCYT database [25] 
in its entirety, which comprises two sets of signatures: one 
with 330 users (MCYT330) and another with a subset of 
100 users (MCYT100). Each user in MCYT produced 25 
authentic signatures and 25 skilled forgeries. Skilled for-
geries were executed by five specific users who observed 
the image-based signature to be imitated, then attempted to 
replicate them about ten times, and then efficiently produced 
the acquired forgeries without any noticeable artifacts (such 
as breaks or slowdowns). As a result, the authors claim that 
highly skilled forgeries are provided that mimic the shape-
based natural dynamics of genuine signatures.

In this procedure, user n (ordinal index) produced a set 
of five authentic signature samples, followed by five skilled 
forgeries of client n − 1. Then, they produced another set of 
five authentic signature samples, followed by five skilled 
forgeries of user n − 2. Finally, user n repeated this proce-
dure, executing 25 signature samples (in sets of 5) and 25 
skilled forgeries (5 samples from each user n − 1 to n − 5). 
Conversely, for user n, 25 skilled forgeries are produced by 
users n + 1 to n + 5.

SVC database: The SVC database [26] is comparable 
to MCYT, as it utilizes the same five features acquired by 
a WACOM Intuos graphic tablet with a sampling rate of 
100 Hz. However, only a subset of 40 users from the com-
plete SVC database, which contained 100 sets (users) of sig-
nature data, was made available for research after the First 
International Signature Verification competition.

The database includes skilled forgery samples created 
by contributors. Each user has 20 authentic signatures, col-
lected in two sessions of ten signatures each, with at least 
1 week between sessions. Additionally, at least four other 
contributors generated 20 skilled forgeries for each user, 

using a software animation viewer of the signature to be 
forged. For this study, we utilized a final set of 16,000 sig-
natures (8000 genuine signatures and 8000 skilled forgeries), 
approximately 10% of the size of the MCYT database.

It is worth highlighting the signatures in the SVC data-
base are primarily in English or Chinese, and no genuine 
signatures were used. Instead, contributors were advised to 
create and practice a new signature before the acquisition 
sessions.

Feature Set Extension and Normalization

Starting from the basic set of features f =
[

x, y, p, az, al
]

 , 
where x and y are the spatial coordinates, p the pen pressure 
on the tablet, and az and al the azimuth and zenith angles, 
provided by the digitizing tablet we extended it by working 
out the delta and delta-delta parameters.

Delta ( ḟi ) and delta-delta ( f̈i ) features are the first and 
second derivative, respectively, for each basic feature fi , 
where i ∈ [1, 5] . The delta parameters are obtained in the 
following way [27]: 

The delta of a given feature f can be approximated 
through the least-squares method as the local slope within 
a region surrounding the current sample f [k] . This region 
encompasses M samples preceding and succeeding the cur-
rent one, resulting in 2 M + 1 sample. The delta window 
length parameter determines the size of this region and is 
defined from −M to M. To calculate the delta, an odd inte-
ger greater than or equal to three must be specified as the 
window length.

Delta-delta is obtained by applying two consecutive times 
the delta Eq. (1).

Features are normalized through a z-score using the fol-
lowing equation, where each feature fi is subtracted by its 
mean and divided by its standard deviation.

Modifying the Feature Vector Length

The signature acquired by digitizing tablet at a sampling 
rate of 100 samples per second consists of a set of L sam-
ples, where each sample contains five different values 
[

x, y, p, az, al
]

 , provided by the digitizing tablet plus the 
delta and delta-delta parameters. Without loss of general-
ity, we will describe the splitting process to obtain a couple 

(1)ḟi =

∑M

k=−M
k ⋅ f [k]

∑M

k=−M
k2

(2)f̂i =
fi − fi

std
(

fi
)
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of different feature sets from the original five-dimensional 
feature set.

There are several basic strategies to modify the feature 
vector length and the sequence of feature vectors, as shown 
in Fig. 2:

1. Use the whole set of features (x, y, p, a, z) to calculate 
one model per user (model1 in Fig. 2, obtained from a 
sequence of L samples, each sample 5 features).

2. Build two subvectors by splitting the features and gen-
erate one model for each subset (model2a and model2b 
in Fig. 2, obtained from a sequence of L samples being 
each sample 2 features for model2a and three features 
for model2b. Obviously, different feature separations are 
possible).

3. Designing the feature vectors by concatenating the fea-
tures of S consecutive sampling points (with)out over-
lapping. In this example (model2, Fig. 2), S = 2 but of 
course different values are possible).

4. Split the feature set into several sections such as initial, 
middle, and ending section. In this approach, the fea-
ture vector dimension is not modified, but the whole 
sequence of feature vectors (L) is split into sections. This 
approach has been applied in a vector quantization algo-
rithm known as multi-section vector quantization [28].

One potential application or relationship between feature 
vector splitting and cognitive computation lies in the field 
of cognitive pattern recognition or cognitive modeling. Cog-
nitive computation aims to develop computational models 
that mimic human cognitive processes and abilities, such as 
perception, attention, memory, and decision-making.

Feature vector splitting can be used as a technique to 
simulate how humans process and analyze information in a 
hierarchical or segmented manner. Human cognition often 
involves breaking down complex stimuli or patterns into 
smaller, more manageable components. By splitting the fea-
ture vector into subsets or segments, cognitive models can 
mimic this hierarchical processing and capture the sequential 
or parallel nature of human cognitive operations.

In cognitive pattern recognition tasks, such as object rec-
ognition or scene understanding, feature vector splitting can 
help replicate the cognitive processes of selective attention 
and feature integration. By splitting the feature vector into 
subsets that correspond to different ways to parametrize a 
signature, such as geometrical, texture, and shape, cognitive 
models can focus attention on specific subsets and integrate 
the information from different subsets to form a holistic rep-
resentation of the pattern or stimulus.

Furthermore, feature vector splitting can be employed in 
cognitive computation to investigate how humans prioritize 
and weight different features during pattern recognition 
tasks. By selectively splitting the feature vector based on 
specific feature properties or relevance criteria, cognitive 
models can simulate human feature selection strategies and 
explore the impact of feature weighting on pattern recogni-
tion performance.

Our motivation for this approach stems from the follow-
ing cognitive insights:

1. Hierarchical Processing: Recent research in cognitive 
neuroscience [29] suggests that the brain processes 
interpersonal verbal communication hierarchically. 
They approach this issue by proposing three levels of 
neurocognitive processes are required. Such a division 
of the information is also proposed in our feature vector 
splitting, which aligns with this hierarchical processing 
by preserving control over individual feature subsets.

2. Selective Attention: Cognitive neuroscience studies [30] 
emphasize the role of selective attention in visual pro-
cessing. Our approach allows us to selectively empha-
size or de-emphasize specific features, simulating the 
cognitive process of selective attention for biometric 
recognition.

3. Perceptual Grouping: The Gestalt principles of percep-
tual grouping have been instrumental in understand-
ing how humans organize visual information. In Prieto 
et al. [31], the authors conclude with evidences about 
improvements in visual working memory when part of 
the information is grouped through perceptual grouping 

Fig. 2  Strategies to split the 
feature vectors by features 
(model2a, model2b) and to 
increase the dimensionality of 
the vectors (model3)
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cues. Our feature vector splitting strategy enables us to 
explore how grouping specific features affects biometric 
recognition performance.

Overall, the application of feature vector splitting in 
cognitive computation allows for the development and 
exploration of computational models that capture the 
hierarchical, selective, and integrative aspects of human 
cognition. By incorporating this technique, researchers can 
gain insights into human cognitive processes and poten-
tially improve the performance of cognitive systems for 
various tasks, such as perception, decision-making, and 
problem-solving.

A simultaneous combination of strategies 2 and 3 is 
also an option. However, our experimental results revealed 
poor performance when using strategy three (model3 in 
Fig. 2), prompting us to exclude combinations of 2 and 3. 
Probably this strategy yields worse outcomes due to the 
curse of dimensionality: the higher the vector dimensions, 
the more challenging to classify vectors.

Considering the different fusion levels described in the 
“Introduction” section in the first approach depicted in 
Fig. 2 (model1), we are in the second situation: the digitiz-
ing tablet detects the two spatial coordinates, the pressure, 
and a couple of angles, and we concatenate them to obtain 
a concatenated feature vector of five dimensions. One of 
the main problems of this approach is the little control 
over the contribution of each component vector on the 
final result, and the augmented feature space can imply a 
more rugged classifier design, the need for more training 
and testing data, etc. [24]. Although it is a common belief 
that the earlier the combination is done, the better result 
is achieved, state-of-the-art data fusion relies mainly on 
the opinion level.

When using the second approach depicted in Fig. 2 (mod-
el2a + model2b), we are shifting part of the feature level 
fusion to opinion fusion, as the final result is obtained by 
combining the scores provided by the combination of two 
different classifiers.

In this paper, we have defined four different scenarios 
when splitting the feature vector into two sets, where each 
set feeds one classifier:

TEST1 
[

x, y, ẋ, ẏ, ẍ, ÿ
]

�������������
set1

,
[

p, ṗ
]

���
set2

 : no pressure neither 

angle in set1, the pressure goes into a second classifier.
TEST2 

[

x, y, ẋ, ẏ, ẍ, ÿ
]

�������������
set1

,
[

p, az, al, ṗ, ȧz, ȧl
]

���������������������
set2

 : no pressure 

neither angles in set1, pressure and angles in the second 
classifier.

TEST3 
[

x, y, p, ẋ, ẏ, ṗ, ẍ, ÿ
]

���������������������
set1

,
[

az, al, ȧz, ȧl
]

�������������
set2

 : set1 includes 

pressure, and angles in a separate classifier.

TEST4 
[

x, y, p, ẋ, ẏ, ṗ, ẍ, ÿ
]

���������������������
set1

,
[

p, az, al, ṗ, ȧz, ȧl
]

���������������������
set2

 : pressure 

is included in set1 and set2, angles in the second set.

Classification Algorithms

We have used two classification algorithms:
Vector quantization (VQ): One possibility for biomet-

ric recognition consists of modeling each user by its own 
codebook [32], where the Linde-Buzo-Gray (LBG) k-means 
algorithm generates the codebook [33], and the number of 
users inside the database is N. We have used the LBG algo-
rithm implementation available in VOICEBOX: Speech Pro-
cessing Toolbox for MATLAB.

Several signatures, usually acquired in the same session 
(same day), are used to train the codebook. Then during 
the test, the process is the following, given a test signature 
acquired in a different acquisition session (day) than the 
training one:

a) Identification (1:N): the test signature is quantized with 
the whole set of codebooks, and one quantization distor-
tion (distance measure) is obtained for each codebook 
(user). The codebook that provides the smallest distance 
reveals the identity of the user.

b) Verification (1:1): the test signature is quantized with 
the codebook belonging to the claimed identity. If this 
distance is smaller than the decision threshold, the user 
is accepted (considered a genuine user). Otherwise, it is 
rejected (considered an impostor).

As far as the feature set has been split into two different 
sets, the process is the following:

1. Using the training signatures, one codebook is obtained 
for each set (CB1, CB2; named model2a and model 2b 
in Fig. 2).

2. Each testing signature is split into two sets (set1, set2), 
and each part is quantized with its corresponding code-
book providing a quantization distortion d(CB1, set1) 
and d(CB2, set2).

3. The two quantizat ion distor t ions obtained 
for each user and testing signature are com-
bined by a trained rule as described in Sect.  1: 
combined = � ⋅ d(CB1, set1) + (1 − �) ⋅ d(CB2, set2)

Dynamic time warping (DTW): Feature matching of the 
testing sample with the models is performed using DTW. It 
is a popular template-matching algorithm well suited to cope 
with random variations due to intra-user variability [34]. 
DTW applies a dynamic programming strategy to produce 
an elastic measure of the distance between two samples, 
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even if they differ in length. We proceed in an analogous 
way to the VQ algorithm. First, we compute a couple of 
DTW distances, one with model2a (first part of the feature 
set) and another one with model 2b (last part of the feature 
set). Then, we have analyzed the DTW algorithm under two 
training conditions: DTW1 (1 training signature per user) 
and DTW5 (5 training signatures per user). The DTW dis-
tance is computed between each training signature and the 
testing sample in the last case. From the set of five distances 
obtained, the minimum distance is selected.

Deep learning techniques could also be employed. They 
offer high classification rates and eliminate the need for fea-
ture vector extension and normalization. However, we have 
chosen to exclude these algorithms from the scope of this 
paper for the following reasons:

a) Limited data availability: Deep learning algorithms typi-
cally require a large amount of labeled data to achieve 
optimal performance. In the field of biometric signature 
recognition, acquiring a large number of training signa-
tures per user can be time-consuming, cumbersome for 
the users and unpractical in real-world scenarios. On the 
other hand, classical machine learning algorithms such 
as VQ and DTW require less data and can still yield 
reliable results with a smaller dataset.

b) Interpretability: The goal of our paper is to shed light 
on the contribution of specific features obtained by digi-
tizing tablet. For instance, can we discard pressure or 
angles? The use of deep learning techniques, although 
it can provide good classification accuracies, is some-
times like a black box where you obtain the result but 

interpretability of selected features and their relative 
importance is overlooked.

c) Computational efficiency: Deep learning models, espe-
cially those with numerous layers and parameters, can 
be computationally intensive and require significant 
computational resources. In contrast, the VQ and DTW 
algorithms used in this paper offer greater computation-
ally efficient.

Experimental Results

Tables 1, 2, 3, and 4 present the experimental results using 
VQ with different bits ranging from 4 to 8 (this implies 
a separate codebook or model size) and three databases: 
MCYT330, MCYT100, and SVC. Instead, Table 5 shows 
the results with all tests and DTW signature verifier. The 
best results are highlighted in color in these tables.

We have utilized two distinct automatic signature veri-
fiers: DTW and VQ. While DTW observes the temporal 
sequence of features, VQ models signatures with multiple 
codebooks, where the number of bits defines the size of 
the codebook. The LBG algorithm is used to construct the 
codebook. It begins by generating a codebook with a single 
vector (bit = 0; 2^0 = 1) and then doubles its size in the next 
iteration. To accomplish this, one vector is taken from the 
previous iteration, and a new vector is produced by adding 
a random disturbance to the first vector. The positions of the 
centroids are iteratively readjusted to ensure they best repre-
sent the training sequence. When convergence is achieved, 

Table 1  Results with Test 1, different databases and VQ-based automatic signature verifier

αOPT denotes the optimal alpha value for considering both set of features at score level. α = 0 and i = 1 mean that only the second or first set of 
features, respectively, was evaluated. Green color highlights the optimal VQ configuration for random forgeries. Yellow color highlights the opti-
mal VQ configuration for skilled forgeries. This is always obtained for codebook sizes greater or equal to six bits



272 Cognitive Computation (2024) 16:265–277

1 3

the process is repeated, and the codebook size is doubled 
until the desired size is reached.

In each test (TESTi), we present the optimal value after 
fusion (TESTi) and the outputs for each classifier alone 
(TESTiα = 0 for the set2, TESTiα = 1 for the set1). Based 
on these results, we observe the following issues, which 
can explain the relevance of the used features in signature 
verification:

We have obtained the following experimental measures:

• Identification: The identification rate (IDR). It is cal-
culated by dividing the number of correctly identified 
individuals by the total number of individuals in the 
population.

• Verification: Detection cost function (DCF). The DCF 
is a metric that measures the cost of making errors in 

Table 2  Results with Test 2, different databases and VQ-based automatic signature verifier

αOPT denotes the optimal alpha value for considering both set of features at score level. α = 0 and α = 1 mean that only the second or first set of 
features, respectively, was evaluated. Green color highlights the optimal VQ configuration for random forgeries. Yellow color highlights the opti-
mal VQ configuration for skilled forgeries. This is always obtained for codebook sizes greater or equal to six bits

Table 3  Results with Test 3, different databases and VQ-based automatic signature verifier

αOPT denotes the optimal alpha value for considering both set of features at score level. α = 0 and α = 1 mean that only the second or first set of 
features, respectively, was evaluated. Green color highlights the optimal VQ configuration for random forgeries. Yellow color highlights the opti-
mal VQ configuration for skilled forgeries. This is always obtained for codebook sizes greater or equal to six bits
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the authentication process. It is typically expressed as a 
weighted sum of the false acceptance rate (FAR) and the 
false rejection rate (FRR), where the weights represent 
the relative cost of each type of error. The minimum of 
the detection cost function (minDCF) refers to the point 
at which the overall cost of the system is minimized. 
This point represents the optimal operating point for the 
system, where the trade-off between FAR and FRR is 
balanced to minimize the overall cost. DCFr and DCFs 
are, respectively, the minimum value of the detection 
cost function (minDCF) for random (DCFr) and skilled 
(DCFs) forgeries. Mathematically, DCF is defined in 
Martin et al. [35] as DCF = Cmiss × Pmiss × Ptrue + Cfa × 

Pfa × Pfalse, where Cmiss is the cost of a miss (rejection), 
Cfa is the cost of a false alarm (acceptance), Ptrue is the 
a priori probability of the target, and Pfalse = 1 − Ptrue. In 
our setup, we have configured Cmiss = Cfa = 1.

TEST1

Overall, we found that pressure improved the verification 
rates when combined with other modalities. The higher 
combined ratios demonstrated this for α ≠ 1 compared to 
the case where the pressure was not used. In particular, we 
observed that the pressure effectively reduced the error rates 
for skilled and random forgeries in most databases.

Table 4  Results with Test 4, different databases and VQ-based automatic signature verifier

αOPT denotes the optimal alpha value for considering both set of features at score level. α = 0 and α = 1 mean that only the second or first set of 
features, respectively, was evaluated. Green color highlights the optimal VQ configuration for random forgeries. Yellow color highlights the opti-
mal VQ configuration for skilled forgeries. This is always obtained for codebook sizes greater or equal to six bits

Table 5  Results with all tests, different databases and DTW-based automatic signature verifier

αOPT denotes the optimal alpha value for considering both set of features at score level. α = 0 and α = 1 mean that only the second or first set of 
features, respectively, was evaluated. Green color highlights the optimal results for DTW and random forgeries. Yellow color highlights the opti-
mal results for DTW and skilled forgeries. In contrast to VQ, there is no model size parameter to adjust in this situation
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For example, in MCYT100 VQ1, we found that the pres-
sure consistently reduced the performance, with fewer bits 
resulting in higher contributions, as shown in Table 1. In 
addition, we found that 7 bits produced the best perfor-
mance for both random and skilled forgeries. Similarly, 
in MCYT100 VQ5, the pressure improved the results by 
roughly 1.5% and 0.5% for skilled and random forgeries, 
respectively. The best results were achieved with 7 and 8 
bits.

In MCYT330 VQ1 and VQ5, we observed that the fusion 
constantly improved the results, with the random forgery 
being less reduced than the skilled forgery, as expected. The 
best results were found with 6 and 7 bits for random and 
skilled forgeries, respectively, in VQ1 and 8 bits in VQ5. 
Moreover, we found that the higher the number of training/
reference/enrolled signatures, the better the results obtained 
with higher bits.

However, in SVC2004 VQ1 and VQ5, we found that add-
ing pressure did not improve performance. In fact, adding 
pressure degraded the performance in VQ1, while in VQ5, 
no contribution was observed. After fusion, the best per-
formance was obtained with α = 1 for skilled forgeries and 
α = 0.96 for random forgeries, with 8 and 7 bits, respectively.

In MCYT100 DTW1 and DTW5 (Table 5), we found that 
the fusion improved the results in all cases, but adding pres-
sure did not contribute significantly. The contribution was 
0.1% for random forgeries and 0.6% for skilled forgeries, 
which reported higher performance. Similarly, in MCYT-
330DTW1 and DTW5, we observed almost the same per-
formance when (x, y) were only used to verify signatures in 
random forgery and a slightly improved performance (less 
than 1% of error) in skilled forgery.

In SVC2004 DTW1 and DTW5, we observed a reduction 
of about 2% in error rates for skilled forgeries when pressure 
was added. This high reduction was due to the high error 
rates observed. We also found that the algorithm selected 
0.5 as the optimal α, which means that both sets of features 
have the same importance.

In general, we conclude that the hardware used to acquire 
pressure provides a signal with low discriminative potential 
in signature verification. However, when combined with 
other modalities, a modest improvement in verification 
rates can be consistently observed across the databases and 
experimental protocols.

TEST2

Based on Tables 2 and 5, the results of TEST2 show that 
adding angles to the pressure in the same set can improve 
the performance in some cases for both automatic signature 
verification (ASV) tasks but can also lead to degradation in 
some cases. In MCYT100 VQ1, adding angles improved the 
random forgery slightly but degraded the skilled forgeries 

results compared to TEST1. In MCYT100 VQ5, both ran-
dom and skilled forgeries experiments were somewhat 
improved. In practical terms, adding or not adding angles 
produced the same performance after fusion.

For MCYT330 VQ5, the performance was slightly 
degraded and slightly improved in random and skilled for-
geries. However, no effects were observed by adding the 
angles along the pressure in the same set. In SVC2004 VQ1, 
the performance was reduced by about 2.5% for skilled for-
geries compared to TEST1, with a stable effect in random 
forgeries. In SVC2004 VQ5, better improvements were 
observed in skilled forgeries compared to TEST1 (reduc-
tion of 3% of error) and compared to the use of only x,y 
(reduction of 3.5% of error).

No effects were observed for MCYT100 DTW1 and 
DTW5 compared to TEST1, except for a slightly negative 
result in random forgery in MCYT100 DTW5. Similarly, 
no effects were observed in MCYT330 DTW1 and DTW5, 
except for a somewhat negative impact in random forgery in 
MCYT330 DTW5. In SVC2004 DTW1, an improvement in 
skilled forgeries was observed compared to TEST1, prob-
ably due to the high minDCF error. A non-important perfor-
mance advance was observed in random forgery. However, 
SVC2004 DTW5 showed stable results compared to TEST1.

In general, the results from TEST2 suggest that adding 
angles to the pressure in the same set can improve the per-
formance in some cases for both ASVs. In contrast, in other 
cases, the performance is stable, and in rare cases, it can be 
slightly degraded.

TEST3

The results of MCYT100 VQ1 in Table 3 show that no sig-
nificant effect was observed in the fusion due to the values 
of α being close to 1. However, the performance in both 
random and skilled forgeries improved slightly after adding 
angles along the pressure in the same set.

MCYT100 VQ5 showed that adding a set with angles 
did not affect random forgeries and a small positive effect 
on skilled forgeries. MCYT330 VQ1 and VQ5 produced 
similar results, with no significant effects observed when 
angles were added in a new set.

SVC2004 VQ1 showed that adding angles along with 
the pressure degraded the performance of random forgery 
compared to TEST1 and TEST2, but there were no effects 
observed with skilled forgeries. In contrast, SVC2004 VQ5 
did not show any improvements in random forgery, but it 
considerably improved the performance of skilled forgery 
by approximately 2% of error.

In Table 5, we observed that MCYT100 DTW1 and 
DTW5 showed no effects on random forgery but a modest 
improvement in skilled forgery performance. Similar find-
ings were observed in MCYT330 DTW1 and DTW5, where 
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adding angles did not show any improvement in random 
forgery, but there was a slight reduction in skilled forgery 
errors by 0.2%.

SVC2004 DTW1 showed no effects on random forgery, 
but there was a relevant positive effect on skilled forgery 
performance. In contrast, SVC2004 DTW5 showed no 
impact on random forgery, but it positively affected skilled 
forgery with a reduction of 1% of error.

In general, the findings from TEST3 cannot be directly 
compared to TEST1 or TEST2 because the first set of fea-
tures was changed. However, the results suggest that adding 
pressure to the same features as x and y can improve perfor-
mance. Adding angles along with the pressure can positively 
impact performance, but the impact is smaller for better clas-
sifiers and varies across the datasets. Overall, TEST3 pro-
duced the best performance among all the tests. The results 
also suggest that the impact of adding angles is positive in 
some cases and does not produce any adverse effects in most 
cases, except for rare cases.

TEST4

The performance of MCYT100 VQ1 in Table  4 was 
observed to be the same as that of TEST3, with no relevant 
effect found in the fusion. However, the performance in ran-
dom and skilled forgeries improved slightly in MCYT100 
VQ5, with a reduction of 0.1% and 0.5%, respectively, in 
both experiments.

No effects were found when fusing set 2 in MCYT330 
VQ1, and a similar finding was observed in MCYT330 
VQ5. The more reference signatures and users in the data-
base, the less impact there was on the performance by fusing 
set 2. In contrast, fusing set 2 produced good improvements 
in skilled and zero effects in random forgeries in SVC2004 
VQ1 and SVC2004 VQ5.

In MCYT100 DTW1 in Table 5, both random and skilled 
forgery performances were somewhat reduced. Observations 
to MCYT100 DTW5 showed that only the skilled forgery 
was reduced (0.1% of error), with no effect on random for-
gery. Alphas were around 0.9 in MCYT330 DTW1, resulting 
in modest effects in both experiments. MCYT330 DTW5 
showed a slightly positive impact in skilled forgeries.

SVC2004 DTW1 showed an almost stable effect in 
random forgeries but a high reduction in skilled forgeries 
(from minDCF = 21.67% to minDCF = 18.58%). The same 
observation was made in SVC2004 DTW5, with a modest 
performance reduction in skilled forgeries. Skilled forgeries 
detection was found to be the most challenging experiment. 
In some cases, performance improved. However, improve-
ments were not observed in the case of random forgeries, 
possibly because the performance in random forgeries was 
quite low compared to skilled forgeries.

Comparing combined 4 with combined 3, an improve-
ment was observed in set 4 for VQ5_100, but not signifi-
cantly in DTW. Replication of p in the second set did not 
produce a significant improvement. In general, the study 
showed that while the impact of different techniques varied 
depending on the experiment, the global best performance 
was observed in TEST3.

Conclusions

In summary, this paper has investigated the impact of com-
mon features in signature verification using two automatic 
signature verifiers with various training signatures and 
databases. Our analysis focused on five features acquired 
by the majority of digitizers, namely the signature trajec-
tory (x, y) , pressure ( p ), and pen-tip angles (azimuth and 
elevation). We observed that the combination of pressure 
with x and y features resulted in a consistent improvement 
in performance across the databases and experimental pro-
tocols. However, the pressure alone had low discrimina-
tive potential in signature verification. Adding the pen-tip 
angles to the pressure in the same feature set produced 
mixed results, with some cases showing improved perfor-
mance and others remaining stable or slightly degraded. 
Moreover, we observed that including pressure in the same 
set of features as  x and y can lead to better performance. 
Overall, our results suggest that careful selection and com-
bination of signature features are crucial for improving 
the accuracy of automatic signature verification systems.

Worth to mention that this feature vector splitting can 
be applied to other classifiers to reduce the dimensional-
ity problem and to bring light to the contribution of each 
feature to the classification accuracies. While we have 
applied the vector splitting strategy in an e-security appli-
cation (biometric recognition of people), it can also be 
used in e-health applications.
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