

Degree in Videogame Design and Production

Creating a Unity Framework for Scriptable Object Driven
Development (SODD)

Alex Ruiz Rabasseda

Tutor: Dr. Enric Sesa Nogueras

Acknowledgements

I would like to express my deepest gratitude to my tutor, Enric Sesa, for his

invaluable advice and guidance throughout this project.

I am profoundly thankful to my significant other, Andrea Kunze, for her

unwavering support, patience, and love during the entire process of this project;

even in the moments when I became consumed in my work.

Special thanks to my talented teammates at God Games, Alex Navarro and

Alejandro Vega. Alex, the best artist I know, provided the gorgeous art and

animations for the sample videogame of this project. Alejandro, a brilliant

technical artist and expert in Unity’s shaders, created exceptional shaders and

particle systems that significantly enhanced the visual quality of the final game.

Finally, special thanks to Casey Hofland for his innovative adaptation of DocFX

for Unity packages. By replicating the behaviour of Unity's internal

documentation generation tool for their packages, Casey provided an invaluable

solution that Unity package developers had long needed but never received. His

contribution significantly eased the process of generating and hosting

documentation, saving me countless hours and greatly contributing to the

success of this project.

Abstract

This project investigates and expands upon a novel approach to game architecture

using ScriptableObjects in Unity. The goal is to create a framework that implements

these ideas, establishing a robust foundation for a development workflow based on

ScriptableObjects, coined in this project as ScriptableObject Driven Development.

To demonstrate the viability of this framework, a videogame has been successfully

developed, utilizing the tools provided by the framework.

Resum

Aquest projecte investiga i amplia un enfocament innovador sobre l’ús de

ScriptableObjects com a base per l’arquitectura de videojocs a Unity. L’objectiu és

crear un framework que implementi aquestes idees, establint una base sòlida cap

a una metodologia de desenvolupant centrada en ScriptableObjects, empremtada

en aquest projecte com ScriptableObject Driven Development (SODD). Per

demostrar la viabilitat d’aquest framework, s’ha desenvolupat amb èxit un videojoc

utilitzant totes les eines proporcionades per el framework.

Resumen

Este proyecto investiga y amplia un innovador enfoque sobre el uso de

ScriptableObjects como base para la arquitectura de videojuegos en Unity. El

objetivo es crear un framework que implemente estas ideas, estableciendo una

base sólida hacia una metodología de trabajo centrada en ScriptableObjects,

acuñada en este proyecto como ScriptableObject Driven Development (SODD).

Para demostrar la viabilidad de este framework, se ha desarrollado con éxito un

videojuego utilizando todas las herramientas proporcionadas por el framework.

I

Contents

List of Figures .. III

List of Tables .. VII

Glossary of Terms ... IX

1 Introduction .. 1

2 Theoretical Framework .. 3

2.1 Software Patterns in Game Development .. 3

2.1.1 Command Pattern .. 3

2.1.2 Singleton Pattern .. 4

2.1.3 Observer Pattern .. 5

2.1.4 State Pattern ... 6

2.2 An Overview of Unity as a Game Engine ... 8

2.2.1 Scripting in Unity ... 9

2.2.2 Unity’s Input System ... 9

2.2.3 Existing Patterns in Unity.. 11

2.3 Challenges and Limitations of Scripting in Unity .. 12

2.3.1 The MonoBehaviour Problem ... 12

2.3.2 The Singleton Problem ... 14

2.4 Introduction to ScriptableObjects ... 15

2.5 Game Architecture with ScriptableObjects ... 17

2.5.1 The Three Principles of Game Engineering ... 17

2.5.2 Modular Data .. 19

2.5.3 Event-Driven Architecture... 21

2.5.4 Runtime Object Management ... 23

2.6 Frameworks in Software Development .. 25

2.6.1 Inversion of Control .. 25

2.6.2 Application Programming Interfaces (APIs) ... 25

2.6.3 Framework Design ... 27

3 Objectives .. 29

3.1 Principal Objectives .. 29

3.2 Secondary Objectives .. 29

4 Methodological design and timeline .. 31

4.1 Methodology ... 31

4.1.1 The MoSCoW method .. 31

4.1.2 User Stories, DoR and DoD ... 32

4.1.3 Version Control and CI/CD ... 33

4.2 Planning .. 34

4.2.1 Definition and categorization of requirements and features 34

II

4.2.2 List of categorized requirements .. 39

4.2.3 Definition of project’s environment and workflow ... 44

5 Development .. 47

5.1 Project Setup .. 47

5.1.1 Unity Package Structure ... 47

5.1.2 License ... 48

5.1.3 GitHub Actions .. 49

5.2 Implementation of features ... 50

5.2.1 Scriptable Events .. 50

5.2.2 Event Listeners ... 54

5.2.3 Scriptable Variables .. 56

5.2.4 Variable Observers ... 60

5.2.5 Variable Repository .. 62

5.2.6 Scriptable Collections ... 66

5.2.7 Input Action Handlers ... 70

5.2.8 Control Scheme Handler .. 73

5.2.9 Passive ScriptableObjects .. 76

5.3 Developing a Sample Videogame .. 79

5.3.1 Game Proposal ... 79

5.3.2 Setup .. 81

5.3.3 Input Management .. 81

5.3.4 Player Control ... 84

5.3.5 Collectible Coins ... 91

5.3.6 UI Management .. 92

5.3.7 Audio System .. 97

5.3.8 Game Settings .. 99

5.3.9 ScriptableObject Managers .. 103

5.3.10 Game State Persistency ... 107

5.3.11 Managing Passive ScriptableObjects ... 108

6 Conclusions ... 111

6.1 Objectives ... 111

6.2 Learnings and Achievements ... 112

6.3 Challenges and Setbacks ... 113

6.4 Future Work .. 114

6.5 Final Conclusion ... 115

7 References ... 117

8 Annex ... 121

8.1 Source code.. 121

8.2 Documentation ... 121

8.3 Media .. 121

III

List of Figures

Figure 1: UML diagram for Command Pattern. Source: Khosravi & Guéhéneuc, 2004 4

Figure 2: UML diagram for Singleton Pattern. Source: Contreras & Rene, 2017 5

Figure 3: UML diagram for Observer Pattern. Source: Contreras & Rene, 2017 6

Figure 4: UML diagram for State Pattern. Source: Khosravi & Guéhéneuc, 2004 7

Figure 5: Sample code of a ScriptableObject Variable encapsulating a float value. Source: Hipple,

2017 .. 19

Figure 6: Diagram illustrating a ScriptableObject Variable holding the player’s health. Multiple

systems reference this variable for distinct purposes while being decoupled from each other. Source:

Hipple, 2017 ... 20

Figure 7: Code sample of a ScriptableObject Event. Source: Hipple, 2017 21

Figure 8: Diagram illustrating a ScriptableObject Event that signifies the death of the player. The

Player script raises the event and other game systems listening to the event react accordingly.

Source: Hipple, 2017 .. 22

Figure 9: Code sample of an Event Listener. Source: Hipple, 2017 .. 22

Figure 10: Code sample of a generic Runtime Set. Source: Hipple, 2017 24

Figure 11: Menu entries for the SODD Framework in Unity, organized by feature and data type.

Source: Own elaboration .. 50

Figure 12: Simplified code sample of the base class implementation for all Scriptable Events. Source:

Own elaboration ... 51

Figure 13: Inspector view of the Increment Player Score Event. Source: Own elaboration 52

Figure 14: Console output after invoking the Increment Player Score Event with a payload of 5.

Source: Own elaboration .. 52

Figure 15: ScoreManager script subscribing to the Increment Player Score Event and updating the

score display. Source: Own elaboration ... 53

Figure 16: Coin script triggering the Increment Player Score Event upon collision with the player.

Source: Own elaboration .. 53

Figure 17: Simplified code sampple of the base class implementation for all Event Listeners. Source:

Own elaboration ... 54

Figure 18: IntEvent Listener setup in the Unity Inspector, linking the Increment Player Score Event

to the ScoreManager's increment method. Source: Own elaboration ... 55

Figure 19: Simplified ScoreManager script after introducing Event Listeners, focusing solely on

score-related logic. Source: Own elaboration .. 56

Figure 20: Simplified code sample of the base class implementation for all Scritpable Variables.

Source: Own elaboration .. 57

Figure 21: Inspector view of the Player Score Scriptable Variable with options for setting the value,

read-only status, and debug mode. Source: Own elaboration ... 58

IV

Figure 22: Console output showing the Player Score value changes with debug mode activated,

detailing the new values. Source: Own elaboration ... 59

Figure 23: Revised ScoreManager script referencing an external Scriptable Variable for managing

player score. Source: Own elaboration .. 59

Figure 24: PlayerScoreDisplay script updating the UI component with the current player score by

subscribing to the Scriptable Variable. Source: Own elaboration .. 60

Figure 25: Simplified code sample of the base class implementation for all Variable Observer

implementations. Source: Own elaboration .. 61

Figure 26: IntVariable Observer setup in the Unity Inspector, linking the Player Score variable to the

UI component for real-time updates. Source: Own elaboration ... 62

Figure 27: Inspector view of the Max Player Score Scriptable Variable. Source: Own elaboration 64

Figure 28: Updated ScoreManager script to modify the Player Max Score whenever the current score

exceeds the maximum score. Source: Own elaboration .. 64

Figure 29: Variable Repository with Player Score and Max Player Score variables added to the list

of persistent variables. Source: Own elaboration ... 65

Figure 30: Unity Console output showing actions performed by the Variable Repository, including

saving, loading, and deleting variable data with debug information. Source: Own elaboration 66

Figure 31: Simplified code sample of the base class implementation for all Scriptable Collections.

(Own elaboration) ... 67

Figure 32: Inspector view of the Player Inventory Scriptable Collection for managing the player's

inventory items. Source: Own elaboration .. 68

Figure 33: Key script adding the key GameObject to the Player Inventory collection upon collision

with the player. Source: Own elaboration ... 68

Figure 34: Door script checking the player's inventory for the required key and unlocking the door

upon collision with the player. Source: Own elaboration .. 69

Figure 35: KeyCountDisplay script updating the UI element to reflect the number of keys in the

player's inventory. Source: Own elaboration .. 69

Figure 36: Simplified code sample of the base class implementation for all Input Action Handler

implementations. Source: Own elaboration .. 71

Figure 37: InputAction asset configuration for player movement, reading 2D vector input from the left

joystick of a gamepad. Source: Own elaboration ... 71

Figure 38: Move Action Handler setup in the Unity Inspector, linking the "Move" InputAction to the

"On Player Move" Vector2 Event for handling player movement. Source: Own elaboration 72

Figure 39: Unity Console output showing the "On Player Move" event invocations with vector

payloads, confirming the Input Action Handler functionality. Source: Own elaboration 72

Figure 40: Simplified code sample of the Control Scheme Handler class implementation. (Own

elaboration) ... 73

Figure 41: Inspector view of the Control Scheme Handler setup for managing changes in Input

Control Schemes. Source: Own elaboration .. 74

V

Figure 42: Adding the "Console" control scheme with the required Gamepad device. Source: Own

elaboration. ... 75

Figure 43: Adding the "PC" control scheme with the required Keyboard and Mouse devices. Source:

Own elaboration. .. 75

Figure 44: Debug information logged in the Console regarding the invocation of the created

Scriptable Event and the value changes of the created Scriptable Variable. Source: Own elaboration

 .. 76

Figure 45: A Move Action Handler—now inheriting from the new Passive ScriptableObject type—

with the reference toggle activated, indicating that it needs to be passively loaded into memory.

Source: Own elaboration .. 77

Figure 46: The created menu command, responsible for referencing Passive ScriptableObjects in

the scenes. Source: Own elaboration .. 77

Figure 47: The generated GameObject, containing the references of all Passive ScriptableObjects in

a project. Source: Own elaboration .. 78

Figure 48: Input Action asset setup with Action Maps for Gameplay and UI, including bindings for

both keyboard and gamepad control schemes. Source: Own elaboration 83

Figure 49: Project view of the created Input Action Handlers. Source: Own elaboration 83

Figure 50: Code fragment showing the parameters of the MovementController script. 84

Figure 51: MovementController script setup in the Unity Inspector, using Scriptable Variables for

direction, speed, and smoothing time parameters. Source: Own elaboration 85

Figure 52: JumpController script setup in the Unity Inspector, managing jump mechanics with

Scriptable Variables for parameters and UnityEvents for additional behaviors. Source: Own

elaboration .. 86

Figure 53: DashController script setup in the Unity Inspector, managing dash mechanics with

Scriptable Variables for parameters and UnityEvents for additional behaviors. Source: Own

elaboration .. 87

Figure 54: VoidEvent Listener setup in the Unity Inspector, linking the "On Dash Input Event" to the

DashController's dash execution method. Source: Own elaboration ... 88

Figure 55: Organized folder structure for Player Scriptable Variables, separating parameters and

runtime variables. Source: Own elaboration .. 90

Figure 56: Collectible script using a Bool Variable to manage the visibility and state of collectible

coins. Source: Own elaboration ... 91

Figure 57: LevelSelectionController script setup, using a Bool Variable to manage the availability of

levels and invoking a StringEvent if the level is blocked. Source: Own elaboration 92

Figure 58: BoolVariable Observer setup to display a collected coin on the level button by dynamically

enabling the UI component based on the Bool Variable state. Source: Own elaboration 93

Figure 59: In-level tutorial prompt guiding the player on how to use the directional dash mechanic.

Source: Own elaboration .. 93

Figure 60: TextOpacityAnimator script setup with VoidEvent Listeners to manage the display and

hide events for in-level tutorial prompts. Source: Own elaboration .. 94

VI

Figure 61: Settings menu displaying input icons based on the current input device, providing players

with updated control information. Source: Own elaboration ... 95

Figure 62: Input Icon Repository setup in the Unity Inspector, mapping input bindings to their

respective icons for different control schemes. Source: Own elaboration 96

Figure 63: Jump Icon Provider setup in the Unity Inspector, linking the Jump action to the Input Icon

Repository and dynamically updating the sprite based on the current control scheme. Source: Own

elaboration .. 96

Figure 64: Audio Repository setup in the Unity Inspector, mapping audio events to corresponding

audio clips. Source: Own elaboration ... 98

Figure 65: AudioManager script setup in the Unity Inspector, using a StringEvent Listener to trigger

audio playback from the Audio Repository based on received events. Source: Own elaboration ... 99

Figure 66: Audio mixer setup in Unity, with separate mixing groups for master, FX, and music

volumes, each with an exposed volume parameter. Source: Own elaboration 100

Figure 67: VolumeController script setting audio mixer volumes based on Float Variables and

updating them dynamically on value changes. Source: Own elaboration 101

Figure 68: VolumeController instance setup in the Unity Inspector for managing music volume,

referencing the Float Variable, Audio Mixer, and parameter name. Source: Own elaboration 101

Figure 69: Settings menu setup with Slider and Text components for audio volume control, utilizing

UnityEvents and Variable Observers to manage value changes and display updates. Source: Own

elaboration .. 102

Figure 70: Resulting settings menu displaying audio volume sliders for Master, Music, and Effects.

Source: Own elaboration .. 103

Figure 71: GameManager ScriptableObject with methods to control time scale, load scenes, and quit

the application. Source: Own elaboration ... 104

Figure 72: Unity Inspector showing the On Click event of the game’s exit button setup to invoke the

GameManager's Quit method and play a UI confirmation sound. Source: Own elaboration 104

Figure 73: Level Manager ScriptableObject, with methods to control level flow. Source: Own

elaboration. ... 105

Figure 74: Inspector view of the On Click UnityEvent of a level selection button, calling the Level

Manager to navigate to level 2. Source: Own elaboration. .. 105

Figure 75: CursorManager ScritpableObject, managing cursor state depending on changes in the

value of the current control scheme. Source: Own elaboration. .. 106

Figure 76: Inspector view of Is Level 2 Available, one of the varaibles marked to be persisted. Source:

Own elaboration. .. 107

Figure 77: Inspector view of the Variable Repository, containing all the Scriptable Variables to be

persisted. Source: Own elaboration. .. 108

Figure 78: The generated object referencing all the Passive ScriptableObjects. Source: Own

elaboration .. 110

VII

List of Tables

Table 1: Planned functionalities for the SODD Framework, categorized using MoSCoW. (Own

elaboration) .. 44

VIII

IX

Glossary of Terms

API Application Programming Interface. A set of protocols,

routines, and tools for building software applications.

APIs specify how software components should interact

and are used when programming graphical user

interface components.

Build The result of compiling and packaging a Unity project

into an executable form that can be run on a target

platform, such as Windows, Mac, Linux, or a specific

console.

Component A modular piece of functionality in Unity that can be

attached to GameObjects to define behaviour and

appearance.

Data-Driven Design A design approach where game data is separated from

game logic.

Dependency Injection A design pattern used to implement IoC (Inversion of

Control), allowing for the decoupling of dependencies

from the objects that use them.

DocFX A static site generator for producing documentation from

source code.

Editor Time The period when developers are working within the Unity

Editor, modifying and configuring the game. Changes

made during editor time affect the design and structure

of the game but are not executed in real-time.

Framework A reusable set of libraries or classes for a software

system or subsystem. Frameworks provide particular

functionality and dictate the architecture of applications

developed with them.

X

Inspector A window in the Unity Editor that allows developers to

view and edit properties of selected objects.

Inspector-Friendly Tools Tools in Unity that leverage the Inspector to create user-

friendly interfaces for editing components and assets.

IoC Inversion of Control. A design principle in which the

control flow of a program is inverted, meaning that

custom-written portions of a program receive the flow of

control from a generic framework.

LTS Long-Term Support. A version that receives updates and

fixes for an extended period, typically two years. LTS

versions are recommended for projects that require a

stable and reliable development environment over a long

duration.

MonoBehaviour The base class from which every Unity script derives. It

grants the use of Unity's built-in lifecycle methods.

Play Mode A mode in the Unity Editor that executes the game in

real-time as if it were running as a standalone build.

Persistence The characteristic of state that outlives the process that

created it.

Prefab A pre-configured GameObject that acts as a template to

be reused and instantiated across multiple scenes.

Runtime The period during which the game is actively running,

either within the Unity Editor's Play Mode or as a

standalone build. Changes and interactions that occur

during runtime are part of the game's live execution

environment.

ScriptableObject A modular piece of functionality in Unity that can exist in

memory during runtime without having to be attached to

a GameObject.

XI

SODD ScriptableObject Driven Development. A development

methodology that utilizes ScriptableObjects to manage

game data, events, and logic in Unity.

Transform A component in Unity that represents the position,

rotation, and scale of an object.

Unity Editor The primary interface for building games and

applications in Unity, where developers can create and

manipulate GameObjects, Components, and other game

elements.

UnityEvent A type of event in Unity that can be hooked to several

functions within the context of the current scene from the

Inspector window.

UPM Unity’ Package Manager.

User Story A simple, clear description of a feature from the

perspective of the person who desires the new

capability, usually a user or customer of the system.

XII

Introduction 1

1 Introduction

Unity holds the position of being one of the most versatile, easy to learn and,

consequently, popular engines in the game development landscape. As a result,

Unity serves as a widely used tool for both independent and major game

development projects. However, the development of videogames, as any other

software, requires commitment to good practices, patterns, and architecture.

While Unity offers a diverse range of features and capabilities, developers often face

challenges related to dependency management and interactions between systems

within their projects. These issues, if not addressed adequately, can lead to complex

and rigid game structures, hindering scalability and maintainability.

It is in this context that Ryan Hipple, principal engineer of Schell Games, introduces

in the Unite Austin conference of 2017 (Hipple, 2017) a novel approach to game

development employing Scriptable Objects. Hipple’s proposal advocates for a more

modular and manageable game architecture in Unity, harnessing the potential of

Scriptable Objects to mitigate common development challenges.

Hipple’s approach promotes a development paradigm centred on Scriptable

Objects, referred to as Scriptable Object Driven Development (SODD) throughout

this project. Despite the benefits of SODD, there is a noticeable absence of a

comprehensive and practical implementation of these architectural principles in

Unity.

This final year project aims to fill this gap in the landscape of Unity’s development

tools by developing a comprehensive framework based on Hipple’s principles of

ScriptableObject Driven Development.

2 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Theoretical Framework 3

2 Theoretical Framework

2.1 Software Patterns in Game Development

Software patterns, a concept popularized by the seminal work "Design Patterns:

Elements of Reusable Object-Oriented Software" by Gamma et al. (1995), represent

solutions to common design problems in software engineering. These patterns offer

a standardized methodology to address recurring challenges, promoting code reuse

and system robustness. They have become a cornerstone in software development,

including game development, due to their ability to simplify complex design

decisions and enhance code maintainability and scalability.

In game development, the unique challenges posed by dynamic, interactive

environments make the application of software patterns particularly crucial. Games

often require the management of complex state systems, real-time input handling,

and the orchestration of numerous interactive elements. The use of well-established

patterns can streamline these processes, ensuring that game developers can focus

on the creative aspects of game design without being bogged down by underlying

technical complexities.

2.1.1 Command Pattern

The Command pattern consists in encapsulating a request as an object, which in

term allows for parameterization, queuing and logging of requests, and supporting

undoable operations.

A key application of the Command pattern in game development is in configuring

input controls. Games often translate user inputs, like button presses and mouse

clicks, into in-game actions. The Command pattern offers a flexible method for

mapping these inputs to various game actions, facilitating user-configurable input

mappings and significantly simplifying input management (Nystrom, 2014).

Moreover, the Command pattern is instrumental in managing game characters,

especially in scenarios driven by AI. By decoupling commands from specific actors,

the pattern allows for more generic and reusable commands. This is crucial in the

4 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

development of complex AI systems in games, where AI engines generate

commands executed by game actors, thus providing flexibility and enhancing AI

behaviour (Gatteschi, Lamberti, Montuschi, & Sanna, 2016).

Another significant implementation of the Command pattern is in developing undo

and redo functionalities in games, commonly seen in strategy games and game

design tools. This feature allows players to reverse or repeat actions, adding a

strategic dimension to gameplay and providing a safety net during game design

processes (Mechtley & Trowbridge, 2011).

Figure 1: UML diagram for Command Pattern. Source: Khosravi & Guéhéneuc,
2004

2.1.2 Singleton Pattern

The Singleton pattern ensures that a class has only one instance and provides a

global point of access to it.

One of the primary advantages of using the Singleton pattern in game development

is its ability to provide controlled access to shared resources. For instance, a game

might have a central manager for handling game states, audio management, or

global settings. Implementing these managers as Singletons ensures that there's

only one instance of each manager throughout the game, providing a single source

of truth and preventing issues like conflicting states or redundant resource allocation

(Nystrom, 2014).

Theoretical Framework 5

Another significant aspect of the Singleton pattern is its memory efficiency. By

ensuring only one instance of a class is created, it reduces the memory footprint,

which is a critical consideration in game development, especially for mobile or

resource-constrained platforms (Rautakopra, 2018).

However, it is essential to use the Singleton pattern judiciously. Overuse or misuse

can lead to problems like increased coupling between classes and difficulty in

testing due to the global state. Game developers must balance the need for

Singleton instances with proper design practices to ensure maintainability and

scalability of the game code (Freeman, The Singleton Pattern, 2015).

Figure 2: UML diagram for Singleton Pattern. Source: Contreras & Rene, 2017

2.1.3 Observer Pattern

The Observer pattern defines a one-to-many dependency between objects so that

when one object changes state, all its observers are notified and updated

automatically.

One of the key applications of the Observer pattern in game development is in the

implementation of event handling systems. Games often involve numerous events,

such as player actions, game state changes, or external inputs. The Observer

pattern allows various parts of the game, like the UI, AI, and game logic, to observe

these events and react accordingly without being tightly coupled to the event source.

This decoupling promotes a more modular and maintainable codebase, which is

6 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

essential for complex game development projects (Freeman, The Observer Pattern,

2015).

Another advantage of using the Observer pattern is its scalability. As games grow

in complexity, the number of events and interactions can increase exponentially.

The Observer pattern helps manage this complexity by allowing independent

classes to communicate with each other through a well-defined interface, without

needing to understand the internal workings of each other (Nystrom, 2014).

However, it is important to note that the Observer pattern can introduce overhead,

especially if not implemented efficiently. Excessive notifications or poorly managed

observers can lead to performance bottlenecks. Therefore, game developers need

to carefully manage observer registrations and notifications, ensuring that only

necessary updates are communicated.

Figure 3: UML diagram for Observer Pattern. Source: Contreras & Rene, 2017

2.1.4 State Pattern

The State pattern allows an object to alter its behaviour when its internal state

changes, appearing as if the object changed its class.

In game development, the State pattern is used to manage different states of game

characters or the game environment. For instance, a character could have states

Theoretical Framework 7

like walking, jumping, or idle. Each state has distinct behaviours, and the character's

actions and animations depend on its current state. Implementing these states

allows for a clean, organized, and easily maintainable code structure (Nystrom,

2014).

One key advantage of using the State pattern is that it reduces conditional

complexity. Instead of using multiple conditional statements to check the state, the

pattern encapsulates state-specific behaviours into separate classes. This

encapsulation not only makes the code more readable but also eases the addition

of new states as the game evolves (Qu, Wei, & Song, 2014).

Another significant application of the State pattern is in AI programming in games.

Different states of AI, like attack, patrol, or flee, can be implemented using the State

pattern. This approach makes AI decisions and transitions between different

behaviours more organized and easier to debug.

However, it's crucial to ensure that the State pattern is not overused or misapplied,

as it can lead to an unnecessary proliferation of classes, making the codebase

harder to manage. Proper design and planning are necessary to balance flexibility

and complexity.

Figure 4: UML diagram for State Pattern. Source: Khosravi & Guéhéneuc, 2004

8 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

2.2 An Overview of Unity as a Game Engine

Unity is a widely recognized game engine that has made a significant impact on the

field of game development. Functioning as an all-encompassing platform, it is

utilized for the development of both 2D and 3D games, applications, and interactive

experiences. Unity provides a comprehensive suite of tools and services that

support the entire game development lifecycle, from the initial stages of creation to

post-launch updates and maintenance. Its flexibility has made it a preferred choice

among a diverse range of developers, from independent creators to large gaming

studios (Singh & Kaur, 2022).

Central to Unity's functionality is the Unity Editor, which is noted for its robust and

user-friendly interface. The Editor offers a broad spectrum of features that

streamline the processes of game creation, management, and iteration. Its intuitive

design is especially beneficial for beginners in game development, as it reduces

entry barriers and simplifies the process of game creation (Jackson, 2015).

One of Unity's key advantages is its support for a wide array of platforms. It allows

developers to publish games and applications on more than 20 different platforms,

including mobile, desktop, console, and virtual reality systems. This multi-platform

capability is a critical aspect of Unity, enabling developers to maximize the exposure

and reach of their games (Hu, y otros, 2023).

In terms of customization and scripting, Unity employs C# as its scripting language.

C# is known for being modern, flexible, and relatively easy to learn, which

contributes to Unity's accessibility to a wide range of developers, from beginners to

experienced programmers (Lukosek, 2016).

The Unity ecosystem is further complemented by a large and active community,

alongside an extensive Asset Store. The Asset Store offers a wide range of assets,

from textures and models to complete project templates and editor extensions,

which aid in the rapid development and iteration of game projects. This collaborative

environment promotes innovation and creative development within the Unity

developer community (Baglie, Neto, Guimarães, & Brega, 2017).

Theoretical Framework 9

2.2.1 Scripting in Unity

Unity’s User Manual (Unity Technologies, 2022) describes scripting as one of the

most important aspects of Unity application development, playing a crucial role in

enabling interactivity and responsiveness within games. The primary functions of

scripts include processing player inputs, orchestrating in-game events, generating

graphical effects, managing the physical behaviour of objects, and potentially

implementing custom AI systems for characters.

Unity's runtime environment is structured around scenes, with each scene being

populated by GameObjects. These GameObjects represent entities within the

engine’s runtime and serve as containers for Components, which ultimately govern

the behaviour of the GameObject they are attached to during scene execution.

While Unity's built-in Components offer versatility, custom gameplay features often

necessitate the development of new Components via scripting. These custom

scripts are pivotal for triggering specific game events, dynamically altering

Component properties, and handling user inputs.

The development of new Components orbits around the MonoBehaviour class, the

foundation of Unity’s scripting framework. This class is essential for all scripts,

providing a structured approach to attaching scripts to GameObjects within the

editor. MonoBehaviour also grants access to event call-backs of the scene’s

lifecycle during execution. In addition, the GameObject class provides an array of

methods for scripts to interact with their GameObject. This includes finding and

connecting GameObjects, modifying their attributes, facilitating communication

between them, and managing the components attached to them.

2.2.2 Unity’s Input System

One of the critical areas of improvement over the years in Unity has been its Input

System. Unity's Input System, as defined in the official manual (Unity Technologies,

2024) is a flexible framework that allows developers to manage and process input

from various devices efficiently. This system offers a modern, streamlined approach

10 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

to handling user interactions, facilitating the creation of responsive and intuitive

controls for games and applications.

The Traditional Method of Handling Input in Unity

Before the new Input System, Unity developers relied on the legacy Input Manager.

While the Input Manager was straightforward and easy to use, it came with several

significant limitations:

1. Hardcoded Inputs: Traditionally, inputs were hardcoded, requiring developers

to explicitly define each input action within their scripts. This method lacked

flexibility, making it challenging to modify or extend input configurations without

altering the codebase.

2. Limited Device Support: The legacy system had restricted support for various

input devices. It primarily catered to basic inputs like keyboards and mice, with

minimal capabilities for handling game controllers or touch inputs.

3. Single-Threaded Processing: Input processing in the legacy system was

single-threaded, potentially leading to performance bottlenecks in complex

applications that required real-time input handling.

Comparison with the New Input System

The new Input System addresses many of the shortcomings of the legacy Input

Manager. The following points highlight the key differences:

1. Configuration vs. Hardcoding: Unlike the old system, the new Input System

allows for configuration-driven input handling. Developers can define input

actions and bindings in a configuration file, streamlining the management and

modification of inputs without necessitating code changes.

2. Enhanced Device Support: The new Input System provides extensive support

for a wide range of input devices, including game controllers, VR headsets, and

mobile touch inputs. It also facilitates the easy integration of custom devices.

Theoretical Framework 11

3. Multi-Threaded Performance: Designed to be multi-threaded, the new system

improves performance by distributing input processing across multiple threads.

This enhancement is particularly beneficial for applications requiring high

responsiveness and low latency.

How the New Input System Works

The new Input System introduces several core components that enhance its

functionality:

1. Input Actions: These are high-level representations of input commands (e.g.,

Jump, Move, Fire). Input actions can be defined and configured within the Unity

Editor, allowing developers to establish input mappings without writing extensive

code.

2. Input Binding: Input bindings map physical device inputs (e.g., keyboard keys,

gamepad buttons) to input actions, enabling flexible and customizable input

configurations.

3. Input Devices: The system supports a variety of input devices out of the box,

including keyboards, mice, gamepads, and touchscreens, and allows for the

creation of custom devices.

4. Action Maps: Action maps are collections of input actions and bindings that can

be activated or deactivated as needed, facilitating the management of different

input schemes for various parts of a game (e.g., menu navigation, gameplay).

2.2.3 Existing Patterns in Unity

Lin et al. (2022) indicated that several patterns are already implemented in Unity’s

core as a game engine in order to simplify the development process. These include:

 Game Loop: A cycle that repeats throughout the runtime of a game regardless

of hardware variations. Unity manages this loop, obviating the need for

developers to implement it manually. This management involves maintaining

consistent performance across devices with varying processing speeds.

12 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Developers are instead required to focus on gameplay elements using

MonoBehaviour methods such as ‘Update’, ‘LateUpdate’, and ‘FixedUpdate’.

 Update Mechanism: In game development, updating object behaviour in each

frame is a common practice. Unity streamlines this process through the

MonoBehaviour class. It automates the frame-by-frame update process,

allowing developers to effortlessly modify GameObjects and components in sync

with the game clock.

 Prototype Pattern: Replicating objects without altering the original is a common

need in game development. Unity's Prefab system is a practical application of

the Prototype pattern. It enables the duplication of template objects, complete

with their components. This system facilitates the creation of Prefab Variants and

hierarchical Prefab nesting, streamlining the process of object instantiation and

variation.

 Component Pattern: This pattern advocates for the construction of smaller,

focused components rather than large, multifunctional classes. Unity's approach

allows developers to combine these components to achieve complex behaviour,

enriching each GameObject with diverse functionalities.

2.3 Challenges and Limitations of Scripting in Unity

2.3.1 The MonoBehaviour Problem

Fine (2016) highlighted that despite its critical role, MonoBehaviour's utility in

extensive projects is often overshadowed by several inherent challenges:

1. Shared vs. Non-Shared State Management: MonoBehaviour's primary

challenge involves the management of shared and non-shared states. In game

development terms, shared state pertains to attributes that are uniform across

all script instances, whereas non-shared state refers to unique characteristics

specific to each instance. MonoBehaviour tends to merge these states, creating

a complex and often confusing scenario, especially in large-scale projects that

require a vast amount of scripting.

Theoretical Framework 13

2. Loss of Changes in Play Mode: The transient nature of changes made during

the Unity play mode. Modifications made to GameObjects, or their states are not

retained post-exit from the play mode, a design choice intended to prevent

enduring unintended alterations. However, this feature restricts the real-time

iterative development process, often essential in game development, as it

hinders the preservation of adjustments made during playtesting.

3. Collaboration Issues: MonoBehaviour's file-level granularity, or lack thereof,

complicates version control and teamwork. Given that MonoBehaviour scripts

are attached to GameObjects within scene or prefab files, multiple developers

working on the same file can encounter version control conflicts. This situation

is particularly problematic in larger teams where simultaneous editing of scene

or prefab files can result in overwrites and complex merge conflicts, impeding

workflow efficiency.

4. Callback Chaos: MonoBehaviour also heavily relies on callbacks, leading to a

situation termed as 'callback chaos'. In projects where numerous scripts are

simultaneously active, managing and tracking the activity in each frame

becomes exceedingly challenging. This complexity often obscures the

understanding of the game’s operational flow, posing significant challenges in

debugging and game state management.

5. Lack of Prefab Flexibility: Workarounds are commonly employed to mitigate

some of the MonoBehaviour limitations, such as the use of uninstantiated

prefabs for shared state management. While this approach can theoretically

separate shared from instance-specific data, it diverges from the original intent

of prefabs and is prone to errors, including accidental scene inclusion or

unintended modifications.

6. Overreliance on C# Statics for Shared States: Additionally, the employment

of C# static variables for managing shared data, while a viable alternative, comes

with its set of drawbacks. This method lacks integrated serialization support in

Unity, complicates inspector integration, and requires additional handling during

domain reloads, often necessitating a more do-it-yourself approach that might

not be ideal in complex projects.

14 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

2.3.2 The Singleton Problem

Hipple (2017) emphasized on the increasing number of setbacks deriving from the

common use of Singleton for managing dependencies between game systems and

handling global state. The short-term solution of applying this pattern can lead to

greater issues in the long term:

1. Rigid Connections: One of the significant issues with using Singletons in Unity

is that they create rigid connections between different systems. This tight

coupling implies that modifying or extending one part of the system necessitates

changes in others, reducing overall flexibility and potentially introducing new

bugs. Such tight coupling hinders the reusability and reconfiguration of

components without impacting other parts of the game, resulting in a more fragile

and less maintainable codebase.

2. Global State Management: Singletons typically maintain state across different

scenes, which can lead to unintended side effects. For example, if a Singleton

retains data that should be reset between scenes, it can cause bugs that are

difficult to track down. This persistent state breaks the clean slate principle,

where each scene should start with a known and controlled state.

3. Polymorphism Limitations: Singletons undermine the object-oriented principle

of polymorphism, which is the ability to substitute objects of different types

through a common interface. When a system relies on a single instance of a

class, it becomes difficult to replace that instance with a different implementation.

This limitation makes it harder to create variants of systems for testing or to

provide alternative behaviours, thus reducing the overall flexibility of the

architecture.

4. Testing and Debugging Challenges: The hidden dependencies introduced by

Singletons present significant challenges for unit testing. Since Singletons are

globally accessible and maintain state, tests can become interdependent,

leading to unreliable or flaky outcomes. Isolating a single component for testing

is difficult when it relies on the global state maintained by Singletons, which

complicates identifying the source of a failure.

Theoretical Framework 15

5. Dependency Nightmares: As the number of Singletons in a project increases,

managing the dependencies between them becomes increasingly complex. This

complexity often leads to race conditions, where the order of initialization and

access to these Singletons causes unpredictable behaviour. Such dependency

issues make the system more error-prone and harder to debug.

6. Single Instance Limitation: By design, the Singleton pattern restricts the

system to a single instance of a class. This limitation can become problematic if

the game's requirements evolve to support multiple instances of a system. For

instance, a game might initially have a single player but later need to support

multiple players or sessions. Revisiting and refactoring the code to remove the

Singleton restriction can be time-consuming and error-prone.

2.4 Introduction to ScriptableObjects

During the 2016 Unite conference presentation “Overthrowing the MonoBehaviour

Tyranny in a Glorious Scriptable Object Revolution”, Richard Fine advocated for the

use of ScriptableObjects in Unity as a solution to the limitations posed by the

MonoBehaviour class, especially in large-scale project development. The

ScriptableObject approach offers a paradigm shift in how data and behaviours are

managed within Unity, providing a range of benefits and new possibilities.

The fundamental concept of ScriptableObjects revolves around creating objects not

attached to GameObjects. This detachment from the scene's GameObjects is a

critical aspect that underpins the advantages highlighted by Fine. Unlike

MonoBehaviour, which is closely tied to the GameObject lifecycle and scene

structure, Scriptable Objects exists independently, allowing for more flexible and

modular designs:

1. Separation of Shared and Instance-Specific Data: One of the primary

advantages of Scriptable Objects is the efficient separation of shared and

instance-specific data. This characteristic allows developers to segregate data

such as common enemy attributes from individual-specific states like health. The

result is a more efficient data management system, significantly reducing

redundancy and enhancing overall project maintainability.

16 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

2. Persistent Data Management: ScriptableObjects also offer persistent data

management. In stark contrast to MonoBehaviour, changes to a Scriptable

Object are retained after exiting play mode, facilitating a smoother and more

effective development workflow. This persistence is particularly advantageous

during game balancing and iterative development phases, where real-time

adjustments are crucial.

3. Enhanced Project Organization and Collaboration: From a collaboration

standpoint, Scriptable Objects mitigate the version control issues often

encountered in MonoBehaviour-based development. Its ability to exist

streamlining the workflow and enhancing productivity.

4. Reduced Complexity and Improved Performance: By not being bound to

GameObjects, ScriptableObject instances don’t carry the overhead of

unnecessary GameObject components, potentially leading to better runtime

performance. Moreover, they steer clear of the “callback chaos” associated with

MonoBehaviour, as they are not part of the GameObject lifecycle methods like

Update and Start. This clarity leads to more maintainable and understandable

code.

5. Flexible and Extensible Design Patterns: ScriptableObjects enable the

implementation of various design patterns, such as Singleton or Factory, in a

cleaner and more efficient manner. It allows for a data-driven design approach

where game behaviour can be modified using different ScriptableObject

instances without altering the core code.

6. Ease of Scalability in Game Development: ScriptableObject promotes a more

scalable architecture, particularly useful in large-scale projects where managing

a multitude of GameObjects and MonoBehaviours can become unwieldy. This

scalability is beneficial not just in terms of project size but also in terms of team

size, facilitating easier onboarding and division of work among different team

members.

Theoretical Framework 17

2.5 Game Architecture with ScriptableObjects

During the Unite Austin 2017 conference presentation “Game Architecture with

ScriptableObjects,” Ryan Hipple introduced an innovative approach to game

architecture using ScriptableObjects. This methodology focuses on creating

modular, editable, and easy-to-debug game systems. Hipple emphasized the

importance of reducing dependencies and global state management in game

development, proposing ScriptableObjects as a versatile solution to these

challenges.

2.5.1 The Three Principles of Game Engineering

Hipple’s approach delineates three key principles of game engineering: Modularity,

Editability, and Debuggability. These principles are foundational in this unique

application of ScriptableObjects to create more efficient and maintainable game

architectures.

Modularity

The first principle, modularity, states that game systems should be designed as

separate and interchangeable modules, components, or units. Each module

performs a distinct function and operates independently of the others. Modularity

offers several benefits:

 Reduced Interdependencies: By ensuring modules are self-contained,

changes in one module have minimal impact on others, reducing the risk of a

change causing a cascade of issues across the game.

 Reusability: Modular components can be reused across different parts of a

game or even in different projects, saving development time and resources.

 Flexible Design: Modularity allows developers to assemble and reassemble

components in various configurations, aiding in experimentation and innovation

in game design.

18 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Editability

The second principle, editability, states that game systems and data should be

easily modified without requiring modifications to the source code. This principle is

particularly important for enabling designers and other team members to tweak

game elements without needing programming expertise.

 Data-Driven Design: This approach involves separating data from the logic

of the game, allowing non-programmers to edit data directly.

 Inspector-Friendly Tools: In Unity, making systems editable often involves

leveraging the Inspector window to create user-friendly interfaces for

modifying game data.

 Runtime Changes: Allowing changes to game data at runtime aids in rapid

prototyping and balancing, as adjustments can be made while the game is

running, and their effects immediately observed.

Debuggability

The third principle, debuggability, advocates for the ease with which a game can be

debugged or tested for errors. A well-designed game architecture should facilitate

easy identification and fixing of bugs.

 Isolation of Issues: Modular design helps in isolating bugs to specific

components, making it easier to identify the source of a problem.

 Readable and Traceable: The system should be transparent enough so that

the flow of data and events can be easily followed and understood by the

developers.

 Tools and Visualizations: Implementing tools that visualize the game’s

operations, such as showing event triggers or data changes in real-time, can

significantly aid in debugging.

Theoretical Framework 19

2.5.2 Modular Data

Hipple proposed the use of ScriptableObject Variables as modular containers of

data.

Concept and Applications

A ScriptableObject Variable encapsulates a single value of a specific data type, such

as integers, floats, or strings. This concept allows these modular containers of data

to be shared and referenced across diverse systems within the game, preventing

these systems from relying on each other to retrieve and modify the game state.

Figure 5: Sample code of a ScriptableObject Variable encapsulating a float value.
Source: Hipple, 2017

In practical game development scenarios, ScriptableObject Variables can be used

extensively to drive game logic and share game state. Hipple gives examples such

as a ScriptableObject Variable holding a float value representing the player's health,

which could be referenced in various systems like UI display and combat

mechanics.

20 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 6: Diagram illustrating a ScriptableObject Variable holding the player’s
health. Multiple systems reference this variable for distinct purposes while being
decoupled from each other. Source: Hipple, 2017

Advantages and Impact

One of the key aspects of ScriptableObject Variables is their accessibility through

the Unity Editor. This allows for easy manipulation of their values directly in the

Inspector, adhering to the editability principle. It empowers both developers and

designers, particularly those without extensive programming backgrounds, to easily

modify game parameters.

The adoption of ScriptableObject Variables also leads to centralized data

management, where altering game data becomes a matter of modifying values in a

single location, rather than navigating through numerous scripts.

Moreover, ScriptableObject Variables inherently promote modularity and reusability.

As these data containers can be integrated across various game systems, they

ensure consistency in data representation and usage, enhancing the overall

coherence of the game architecture.

Most crucially, Hipple's concept of ScriptableObject Variables facilitate a data-driven

design paradigm. This paradigm allows game behaviour to be modified through data

adjustments rather than code alterations. Such an approach is particularly beneficial

Theoretical Framework 21

in a collaborative development environment, where different disciplines, from design

to programming, interact seamlessly with the game's data layer.

2.5.3 Event-Driven Architecture

Hipple emphasized on the application of Scriptable Objects to represent game

events, creating an event-driven architecture with ScriptableObject Events.

Concept and Applications

A ScriptableObject Event, referred also by Hipple as Game Event, consists in a

Scriptable Object that holds a list of listeners, allowing for diverse systems within

the game to subscribe and unsubscribe to this list and raise the event, notifying the

rest of listeners. With this approach, each event in the game becomes a standalone

entity represented by a Scriptable Object.

Figure 7: Code sample of a ScriptableObject Event. Source: Hipple, 2017

In practical terms, an event could signify a change in the player’s health, the

completion of a level, or an enemy encounter. These ScriptableObject Events act

then as broadcasters, sending out signals when certain conditions in the game are

met.

22 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 8: Diagram illustrating a ScriptableObject Event that signifies the death of the
player. The Player script raises the event and other game systems listening to the
event react accordingly. Source: Hipple, 2017

To facilitate this architecture, Hipple introduces the concept of Game Event

Listeners. Listeners consist in game components that subscribe to specific events

and react accordingly. When an event occurs, each listener executes its

corresponding Unity Event, which can be hooked from the Unity Editor to functions

within the context of the current scene, whether it be updating the UI, triggering a

gameplay mechanic, or modifying the game state.

Figure 9: Code sample of an Event Listener. Source: Hipple, 2017

Theoretical Framework 23

Advantages and Impact

One of the most notable advantages of ScriptableObject Events is the significant

reduction in coupling it achieves. In traditional game development paradigms,

events are often tightly integrated into the game's components, leading to a high

degree of interdependency. By abstracting events into Scriptable Objects, game

components can react to events without being directly bound to the event source.

Moreover, this approach offers enhanced flexibility and scalability. Developers can

easily introduce new listeners to existing events or create entirely new events

without disrupting the existing game structure. This flexibility is particularly

advantageous when scaling up the game or introducing new features.

Another critical aspect is the ease of debugging and testing it affords. With each

component acting independently, isolating and testing specific event reactions

becomes much more manageable. This modularity ensures that each part of the

system can be individually verified for correct behaviour.

Additionally, Hipple's ScriptableObject Event-driven architecture provides easy

collaboration in development. Designers, for instance, can modify and create events

using Unity's Editor, while programmers can focus on more complex logic and

underlying systems that react to these events.

2.5.4 Runtime Object Management

Another concept introduced by Hipple is Runtime Sets, which addresses a common

challenge in game development: managing and tracking a dynamic set of items or

objects throughout the game's runtime.

Concept and Applications

At its core, a Runtime Set is a Scriptable Object employed to maintain a dynamic

list of items or objects during the game's runtime. This list can be constantly

updated, with items being added or removed as the game progresses. The key

feature of Runtime Sets is their ability to function as central repositories for specific

types of objects, such as enemies, collectible items, or interactive game elements.

24 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 10: Code sample of a generic Runtime Set. Source: Hipple, 2017

In practical terms, Runtime Sets can be employed in various scenarios where

tracking and managing a group of similar objects is essential. For instance, in a

game that involves combat against multiple enemies, a Runtime Set can function to

keep track of all active enemies in the current level. This Set is then updated

whenever an enemy is spawned or defeated, providing a real-time overview of the

enemies present in the game at any given moment.

With this application of Scriptable Objects, each object that needs to be tracked

would register itself to a Runtime Set upon being created or activated and deregister

when destroyed or deactivated. This registration and deregistration process ensures

that the Runtime Set always contains an up-to-date record of the objects in question.

Advantages and Impact

The traditional approach to tracking such dynamic elements often involves each

object managing its own state or the game performing constant searches through

all game objects to identify relevant items. Runtime Sets offer a more efficient

alternative by centralizing the tracking process. This centralization not only makes

the management of these objects more straightforward but also can lead to

performance optimizations, particularly in complex scenes with numerous objects.

Another key strength of Runtime Sets is their adaptability and scalability. They

provide a flexible framework that can easily accommodate changes in the number

of objects being tracked, making them suitable for games with varying levels of

complexity and object interactions.

Theoretical Framework 25

2.6 Frameworks in Software Development

Frameworks in software development provide the skeleton of an application,

allowing developers to customize and extend functionalities with greater ease. They

often encompass a set of reusable design patterns and code components,

streamlining the development process and promoting code reusability.

2.6.1 Inversion of Control

A key feature of frameworks is their "inversion of control" (IoC). This concept refers

to the reversal of the flow of control compared to traditional library-based

development. In traditional development, the flow of control is dictated by the

application code, which calls specific library functions as needed. However, with IoC

in a framework, this relationship is reversed – the framework calls into the

application code. The framework dictates the overall flow of the application, and the

application-specific code is plugged into it. This means the framework oversees the

main loop, and it is the framework that determines when the application code is

called. IoC is a powerful mechanism for decoupling components, leading to more

modular and easier-to-maintain applications. It is central to the design of modern

software frameworks and a critical concept in understanding how frameworks alter

the development process compared to traditional library use (Pop, 2008).

2.6.2 Application Programming Interfaces (APIs)

As stated by Wu et al. (2015), Application Programming Interfaces (APIs) are central

to the functioning of software frameworks, acting as the primary point of interaction

between the framework and the client's application code. They define a set of

contracts, or interfaces, through which different software components communicate

and interact. This relationship is crucial for leveraging the capabilities of frameworks

in application development.

API Evolution and Compatibility

One of the significant challenges with APIs in frameworks is managing their

evolution. As frameworks evolve, their APIs may change, adding new features or

26 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

altering existing ones. These changes can break backward compatibility,

necessitating updates or rewrites in client applications that rely on older versions of

the API. This evolution process requires a careful balance between introducing new

features and maintaining compatibility with existing client code. The study by Wu et

al. found that missing classes and methods are common in framework evolution,

and these can significantly affect client programs, emphasizing the importance of

understanding the potential impacts of API changes.

Framework-Client Dependency

The use of APIs in frameworks creates a dependency relationship between the

framework and its client applications. This dependency means that client

applications may need to be updated to accommodate changes in the framework's

API. It is essential for developers to assess the cost and impact of these updates.

Effective management of these dependencies requires robust version control and a

keen understanding of the framework's roadmap and update cycles.

API Design and Usability

The design of an API significantly influences the usability and effectiveness of a

framework. A well-designed API simplifies complex tasks, promotes efficient coding

practices, and enhances the developer experience. Conversely, a poorly designed

API can lead to increased development time, potential errors, and frustration. Thus,

API design is a critical aspect of framework development, requiring a deep

understanding of the users' needs and the application domain.

Encapsulation and Modularization

APIs in frameworks often encourage encapsulation and modularization. By

providing a set of well-defined interfaces, frameworks allow developers to

compartmentalize functionality. This modular approach facilitates easier

maintenance, testing, and scaling of applications. It also enables developers to use

only the parts of the framework necessary for their application, leading to leaner and

more efficient code.

Theoretical Framework 27

2.6.3 Framework Design

Frameworks need to address specific challenges related to scalability,

maintainability, and flexibility. Drawing from the experiences in large-scale industrial

banking projects, Bäumer et al. (1997) proposed several key concepts to framework

design.

Domain Partitioning

Large systems often encompass diverse functionalities and requirements. Domain

partitioning involves dividing the system into distinct segments based on

functionality, business logic, or other criteria. This approach allows for targeted

development and management of each segment, enhancing the modularity and

clarity of the system. Frameworks must support this partitioning to enable

developers to work on different segments independently, reducing complexity and

potential conflicts.

Framework Layering

Layering is a technique where various levels of the framework provide distinct

functionalities, such as data access, business logic, and presentation layers. In large

systems, framework layering is crucial for separating concerns and managing

dependencies. Each layer should have a well-defined role and interface, enabling

developers to make changes in one layer without significantly affecting others. This

separation of concerns is pivotal in managing the complexity of large-scale systems.

Framework Construction and Integration

The construction of the framework involves defining its architecture, components,

and interfaces. For large systems, it is essential that the framework is designed with

flexibility and adaptability in mind, allowing it to evolve as requirements change.

Integration strategies are also crucial, as large systems often involve integrating the

framework with existing systems or other frameworks. This integration should be

achieved without tight coupling, maintaining the system's modularity and ease of

maintenance.

28 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Accommodating Domain Needs

Frameworks in large systems need to be tailored to the specific needs of the domain

they are serving. This tailoring involves understanding the unique requirements and

challenges of the domain and designing the framework to address these effectively.

For instance, in banking applications, security and transaction management might

be areas of particular focus.

Evolution and Reusability

Given the size and longevity of large systems, the frameworks used must be

designed for evolution. They should support easy updates and extensions without

significant overhauls. Reusability is another critical factor, as components and

patterns developed for one part of the system should be reusable in others, fostering

efficiency and consistency across the system.

Objectives 29

3 Objectives

3.1 Principal Objectives

 Develop a specialized framework for Unity that provides a solid foundation for

ScriptableObject Driven Development (SODD). The significance of this

framework lies in implementing and expanding the fundamental principles of

modularity, editability and debuggability introduced by Hipple’s game

architecture with ScriptableObjects. The envisioned outcome is a robust and

comprehensive tool that enhances productivity and collaboration in Unity’s

development environment.

 Produce exhaustive and well-structured documentation for the framework. As

key to any software tool, this documentation will serve as a comprehensive guide

for users to understand, implement and effectively use the framework. The

desired outcome is a user-friendly documentation that makes the framework’s

features and functionalities accessible and understandable to developers,

encouraging its use.

 Create a sample videogame using the developed framework. The purpose is to

demonstrate the practical application and effectiveness of the framework in a

real-world use case. The game acts as a proof of concept, illustrating the

streamlined development process facilitated by the framework while

simultaneously serving as a reference for future users.

3.2 Secondary Objectives

 Publish the developed framework on platforms like GitHub and Unity’s Asset

Store. Making the framework publicly available broadens its reach to potential

users while additionally promoting community engagement, feedback and

attracting potential collaborators, contributing to the open-source community.

30 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Methodological design and timeline 31

4 Methodological design and timeline

4.1 Methodology

The development of the SODD Framework employs a hybrid approach,

incorporating elements from Agile and Lean methodologies to create a flexible,

adaptive development process. This methodological fusion ensures a balance

between rapid delivery and process efficiency.

4.1.1 The MoSCoW method

The initial step involves gathering all necessary requirements for the framework.

This includes functional requirements as well as non-functional requirements such

as performance and usability.

Once defined, the requirements are categorized following the MoSCoW method to

define their relevance and priority within the tool landscape the framework offers.

Ahmad et al. (2017) describe the MoSCoW method as a prioritization technique

used in management, business analysis, project management, and software

development to define the importance of each requirement. This method

categorizes requirements into four categories:

 Must Have: These are non-negotiable requirements that the software cannot

function without. They form the backbone of the project and must be

implemented for the framework to be considered viable. This category often

includes core functionalities that define the framework's purpose and objectives.

 Should Have: Requirements classified under "Should have" are important but

not critical for the launch. They enhance the framework's utility or user

experience but can be delayed without compromising the framework's core

functionality. These features should be included in the initial releases if time and

resources permit.

 Could Have: These are desirable features that, while beneficial, have the least

impact on the framework's overall goals. They are typically implemented if extra

32 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

time becomes available after the development of higher-priority features. "Could

have" features offer a way to add value to the framework without detracting from

the essential work needed to meet "Must have" and "Should have" requirements.

 Won’t Have: This category is sometimes added to the list to explicitly state which

features will not be included in the current release/delivery but might be

considered in the future.

4.1.2 User Stories, DoR and DoD

Once the priority of the requirements and features is determined, each one is

translated into a User Story. User Stories are a fundamental aspect of Agile

methodologies, offering a simple yet effective way to capture user-centric

requirements. A User Story typically follows a simple template:

As a [type of user], I want [an action] so that [a benefit/a value].

This format helps in breaking down complex requirements into manageable,

implementable tasks that directly contribute to the user's experience with the

framework (Kumar, Tiwari, & Dobhal, 2022).

User Stories contain a "Definition of Ready" (DoR) and a "Definition of Done" (DoD),

these components act as a quality gate to ensure they meet the project’s standards

and requirements at every stage of the development process.

 Definition of Ready (DoR): The DoR specifies the conditions a User Story must

meet before the development can begin. This includes having a clear

description, acceptance criteria, and ensuring that the Story is feasible within the

current scope and resources (Power, 2014).

 Definition of Done (DoD): The DoD establishes the criteria for when a User

Story is considered complete. It typically includes passing all specified tests,

code reviews, integration into the main branch without issues, and

documentation updates. The DoD is crucial for maintaining quality, as it expected

value before being marked as complete (Diebold, Theobald, Wahl, & Rausch,

2018).

Methodological design and timeline 33

4.1.3 Version Control and CI/CD

The development of the defined User Stories relies on the use of GIT for version

control and CD/CI to follow modern standardized development and deployment

practices.

GIT is a distributed version control system that plays a central role in managing

source code, enabling developers to work on the same project without interfering in

each other’s progress. GIT allows for the tracking of changes, reverting to previous

versions of the code, and managing different development branches efficiently. The

use of GIT ensures that the framework’s codebase remains organized, versions are

well-managed, and the integration of changes is seamless (Casquina & Montecchi,

2021).

Continuous Integration (CI) and Continuous Deployment (CD) are practices that

automate the process of integrating code changes and deploying them to production

environments, automating the process of getting the software from version control

to the end user.

 Continuous Integration (CI) involves automatically building and testing the

framework every time a new code change is pushed to the repository. This

ensures that new changes do not break or negatively impact the existing

functionality. CI aims to detect and fix integration errors as quickly as possible,

maintaining the codebase's health and facilitating a smoother development

process. Tools like Jenkins, Travis CI, or GitHub Actions can be used to

automate the CI process, running tests and builds on every commit (Naveen, et

al., 2023).

 Continuous Deployment (CD) extends the CI process by automatically

deploying the code to production environments after it passes all tests. This

means that new features, fixes, and updates can be delivered to users quickly

user needs and feedback. CD minimizes the time taken from the development

of a new feature to its deployment, enabling a rapid iteration cycle that is vital for

maintaining the quality of the framework (Ali, 2023).

34 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

4.2 Planning

4.2.1 Definition and categorization of requirements and features

Building upon the principles of a ScriptableObject-based game architecture, as

proposed by Hipple (2017) and previously examined in this document, the SODD

Framework has been delineated around three core features: Scriptable Events,

Scriptable Variables and Runtime Sets. Other complimentary functionalities have

been additionally defined for the framework, with lesser development priorities.

Scriptable Events

Scriptable Events are conceptualized as ScriptableObjects designed to encapsulate

an event. This encapsulation facilitates other components to reference, subscribe,

unsubscribe, and invoke these events.

The implementation of Scriptable Events should be versatile, supporting payloads

that include Unity's fundamental data types as well as additional types to cover a

broad spectrum of use cases. The prioritization of each Scriptable Event's

implementation is determined by the significance of the payload's data type it

supports.

Inherently, the concept of Scriptable Events implements Hipple’s first principle of

game engineering: modularity. To further adhere to the principles of debuggability,

it is required for Scriptable Event implementations to incorporate an inspector option

that enables the logging of event invocations. Additionally, to implement the principle

of editability, they should provide fields for the specification of payload values and

mechanisms for event triggering from the Unity inspector.

Scriptable Variables

Scriptable Variables are defined as a value encapsulated within a ScriptableObject,

facilitating access and modification by other components. Aligning with the approach

taken with Scriptable Events, the development of Scriptable Variables should

encompass a wide array of data types. The prioritization for implementing these

variables is guided by the relevance of their data types.

Methodological design and timeline 35

The principle of modularity is intrinsic to the concept of Scriptable Variables. It is

essential for Scriptable Variables to permit modifications via the Unity inspector and

to feature mechanisms for logging changes. This approach ensures adherence to

the principles of editability and debuggability.

As an extension to Hipple’s initial concept of Scriptable Variables, a new

requirement has been added. This addition stipulates that Scriptable Variables must

be capable of notifying other components about changes in their values. Such a

feature enhances the reactivity of the system, allowing components that reference

a Scriptable Variable to update automatically, thereby obviating the need for

inefficient polling methods.

Runtime Sets

Runtime Sets, now termed Scriptable Collections within the framework’s context,

are conceptualized as ScriptableObjects that encapsulate a collection of values or

references. These collections provide components with the ability to reference them

for querying the presence of items, as well as adding or removing elements.

Consistent with the development priorities of Scriptable Events and Scriptable

Variables, the emphasis for Scriptable Collections is placed on the types of elements

they contain.

Following the previously mentioned ScriptableObject implementations, Scriptable

Collections integrate in their concept the principle of modularity but require

additional mechanisms for logging changes—such as items being added or

removed—and enable modifications from the inspector in order to comply with the

debuggability and editability principles.

An enhancement to the Scriptable Collections concept is the incorporation of a

requirement for mechanisms that notify observers about changes within the

collection, particularly the addition or removal of items. This advancement mirrors

the improvements made to Scriptable Variables by introducing a reactive update

system, thereby eliminating the need for inefficient polling techniques.

36 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Event Listeners

Event Listeners, as conceptualized by Hipple, serve as components designated to

subscribe to a Scriptable Event. Upon the invocation of such event, these listeners

trigger a corresponding Unity Event, allowing developers to specify in the editor

actions to be executed in the scene.

Event Listeners, as a concept, inherently carry the principles of modularity and

editability. The principle of debuggability, while not directly integrated into the Event

Listeners themselves, is addressed through the events to which they subscribe, as

previously outlined in the requirements of Scriptable Events.

The prioritization of Event Listener implementations directly correlates with that of

the Scriptable Events they are designed to support. For instance, an Event Listener

designed for integer-based events (Int Event Listener) is prioritized in alignment with

the implementation priority of its corresponding Scriptable Event (Int Event).

Value Reference

Value References, another complimentary concept idealized by Hipple, are

designed to streamline the workflow for designers and enhance component

editability. These references allow a script to utilize a value that may either be

derived from the script's internal variable or from an external Scriptable Variable.

This flexibility is crucial as the requirements dictating the reliance on internal versus

external values can frequently shift throughout the iterative phases of game design.

By employing Value References, developers are afforded the convenience of

toggling between internal and external sources for a given value directly from the

Unity inspector, negating the need for code modifications to accommodate evolving

design requirements.

Given their role in facilitating flexibility and adaptability in the design process, Value

References are recognized as an important but supplementary feature within the

development framework. Consequently, they are assigned a lower priority

compared to core elements such as Scriptable Events, Variables, and Collections.

Methodological design and timeline 37

Variable Repository

In the Unity Editor, modifications to values of ScriptableObject instances are

retained across Play Mode sessions, facilitating the development workflow.

However, this persistence is not maintained in the final game builds, presenting a

challenge for maintaining state between game sessions. Addressing this challenge

necessitates the development of a mechanism that ensures the continuity of

scriptable variable values across executions.

The proposed solution, termed as Variable Repository, is designed to bridge this

gap. It is conceptualized as a specialized entity responsible for managing a

collection of references to Scriptable Variables that require their values to be

preserved across game sessions. The repository functions by persistently storing

and retrieving these values in response to specific lifecycle events, such as the

loading and unloading of scenes or the initiation and termination of the game.

Despite the significance of Variable Repositories for managing the persistence of

Scriptable Variable values, they are not indispensable for the core functionality of

the framework. Consequently, the implementation of this feature is considered a

secondary priority.

Variable Observers

Variable Observers, building upon the concept of Event Listeners, represent an

addition to complement the framework’s ecosystem. These components, once

attached to a GameObject, are linked to a Scriptable Variable and trigger a Unity

Event in response to updates in the variable’s value. Additionally, a toggle option is

included, which in term allows for the Unity Event to be triggered upon initialization.

This functionality aims to benefit components such as UI elements, enabling them

to be updated not only with the initial value of the variable but also whenever the

variable's value changes thereafter.

This component implements the principles of modularity and editability, reducing the

need for scripts dedicated to reading a value of a variable and assigning it to another

component that feeds from this value. The implementation of the principle of

38 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

debuggability is ensured by the Scriptable Variable to which the observer is

assigned, maintaining consistency with the design considerations outlined for

Scriptable Events and Variables.

Given that Variable Observers are a complementary component rather than a core

feature, they are assigned a lower priority in the development process. However,

they represent an important aspect to consider for subsequent integration once

foundational functionalities have been established.

Input Action Handlers

Input Action Handlers are a concept introduced with the objective to expand upon

Hipple’s use of ScriptableObjects for managing events and data. These

ScriptableObjects are designed to monitor events initiated by an Input Action and,

in response, trigger Scriptable Events. This functionality bridges de gap between

events occurring in Unity’s Input System and the event system featured by the

framework. Additionally, the capability to debug event invocations, a feature

previously defined in the Scriptable Event requirements, is extended to Input Action

Handlers, enhancing the ability to log input actions in runtime from the framework’s

event system.

While this feature is considered secondary, it is prioritized immediately following the

implementation of the core functionalities.

Control Scheme Handlers

Control Scheme Handlers further extend the integration between Unity’s Input

System and the SODD Framework's event system.

Unity’s Input System supports the creation of control schemes. Each control scheme

can be bound to one or multiple devices, enabling developers to define how input

from these devices translates to input actions.

Control Scheme Handlers are conceptualized as ScriptableObjects that monitor the

currently active control scheme of an Input Action Asset at runtime, and respond to

changes by triggering corresponding Scriptable Events. This approach allows for

Methodological design and timeline 39

game systems to react to these changes by listening to the Scriptable Events

invoked by the Control Scheme Handlers. For instance, if the control scheme

switches from a gamepad to a mouse, react by showing the cursor and updating UI

elements to reflect mouse-based controls. Conversely, switching to a gamepad can

prompt to hide the cursor and update the UI to display gamepad controls.

While the integration of Control Scheme Handlers is beneficial and useful, it is not

essential to the core functionality of the framework. Therefore, its implementation is

prioritized after the foundational features.

4.2.2 List of categorized requirements

Following the defined requirements and their assigned priority, the following table

has been made containing all the planned framework functionalities.

Feature Priority Description

Void event Must have Event with no payload

Bool event Must have Event with boolean payload

Int event Must have Event with integer payload

Float event Must have Event with float payload

String event Must have Event with string payload

Vector2 event Must have Event with 2D vector payload

Vector3 event Must have Event with 3D vector payload

GameObject event Must have
Event with a GameObject reference

payload

Bool variable Must have Variable holding a boolean value

Int variable Must have Variable holding an integer value

Float variable Must have Variable holding a float value

40 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

String variable Must have Variable holding a string value

Vector 2 variable Must have Variable holding a 2D vector value

Vector3 variable Must have Variable holding a 3D vector value

GameObject collection Must have Collection of GameObject references

Void event listener Must have Reacts to void events

Bool event listener Must have Reacts to bool events

Int event listener Must have Reacts to int events

Float event listener Must have Reacts to float events

String event listener Must have Reacts to string events

Vector 2 event listener Must have Reacts to Vector2 events

Vector3 event listener Must have Reacts to Vector3 events

GameObject event listener Must have Reacts to GameObject events

Transform event
Should

have

Event with a Transform reference

payload

ScriptableObject event
Should

have

Event with a ScriptableObject reference

payload

Component event
Should

have

Event with a generic component

reference payload

Object event
Should

have

Event with a generic object reference

payload

AudioClip event
Should

have
Event with an AudioClip payload

Methodological design and timeline 41

GameObject variable
Should

have

Variable holding a GameObject

reference

Transform variable
Should

have
Variable holding a Transform reference

LayerMask variable
Should

have
Variable holding a LayerMask value

Color variable
Should

have
Variable holding a color value

Transform collection
Should

have
Collection of Transform references

Component collection
Should

have
Collection of Component references

Object collection
Should

have
Collection of Object references

AudioClip collection
Should

have
Collection of Object references

Void Input Action Handler
Should

Have
Listens for input actions with no data

Bool Input Action Handler
Should

Have

Listens for input actions with boolean

data

Int Input Action Handler
Should

Have

Listens for input actions with integer

data

Float Input Action Handler
Should

Have
Listens for input actions with float data

Vector2 Input Action Handler
Should

Have

Listens for input actions with Vector2

data

42 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Vector3 Input Action Handler
Should

Have

Listens for input actions with Vector3

data

Value Reference
Should

Have

Switches between instance and

variable values

Variable Repository
Should

Have

Save and load scriptable variable

values

Transform event listener
Should

have
Reacts to Transform events

ScriptableObject event listener
Should

have
Reacts to ScriptableObject events

Component event listener
Should

have
Reacts to Component events

Object event listener
Should

have
Reacts to Object events

AudioClip event listener
Should

have
Reacts to AudioClip events

Color event Could have Event with a color payload

LayerMask event Could have Event with a LayerMask payload

ScriptableObject variable Could have
Variable holding a ScriptableObject

reference

Component variable Could have
Variable holding a generic Component

reference

Object variable Could have
Variable holding a generic Object

reference

AudioClip variable Could have Variable holding an AudioClip reference

Methodological design and timeline 43

Int collection Could have Collection of integer values

String collection Could have Collection of string values

Color collection Could have Collection of Object references

Scriptable Dictionary Could Have A dictionary editable from the inspector

Bool Variable Observer Could Have Reacts to changes in a bool variable

Int Variable Observer Could Have Reacts to changes in an int variable

Float Variable Observer Could Have Reacts to changes in a float variable

String Variable Observer Could Have Reacts to changes in a String variable

Vector2 Variable Observer Could Have Reacts to changes in a Vector2 variable

Vector3 Variable Observer Could Have Reacts to changes in a Vector3 variable

GameObject Variable Observer Could Have
Reacts to changes in a GameObject

variable

Transform Variable Observer Could Have
Reacts to changes in a Transform

variable

ScriptableObject variable Observer Could Have
Reacts to changes in a ScriptableObject

variable

Component variable Observer Could Have
Reacts to changes in a Component

variable

Object variable Observer Could Have Reacts to changes in a Object variable

LayerMask variable Observer Could Have
Reacts to changes in a LayerMask

variable

Color variable Observer Could Have Reacts to changes in a Color variable

44 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

AudioClip variable Observer Could Have
Reacts to changes in a AudioClip

variable

Color event listener Could have Reacts to Color events

LayerMask event listener Could have Reacts to LayerMask events

Bool collection Won't have Collection of boolean values

Float collection Won't have Collection of float values

Vector2 collection Won't have Collection of Vector2 values

Vector3 collection Won't have Collection of Vector3 values

LayerMask collection Won't have Collection of LayerMask references

Table 1: Planned functionalities for the SODD Framework, categorized using
MoSCoW. (Own elaboration)

4.2.3 Definition of project’s environment and workflow

Unity Version

The development of the SODD Framework will be anchored to Unity 2022.3, which

is the most recent LTS version.

Development Platform

GitHub has been selected as the primary platform for hosting the framework's

repository. This choice is grounded in the following key advantages:

 Popularity: GitHub is widely used, especially for open-source projects, making

it a familiar environment for contributors.

 Project Management Tools: The inclusion of GitHub Projects facilitates

organized and efficient project management.

Methodological design and timeline 45

 CI/CD Tools: GitHub Actions provide a seamless integration for Continuous

Integration/Continuous Deployment pipelines, enhancing development

workflows.

 Documentation Hosting: GitHub Pages offers a convenient and free solution

for hosting project documentation, ensuring accessibility and ease of

maintenance.

GIT branch management

The project's branch management strategy is structured as follows:

 Main Branch: This branch hosts the latest stable version of the code, serving

as the foundation for all releases.

 Develop Branch: Originating from the main branch, the develop branch is

designated for integrating new features. This branch acts as a staging area for

the next version's features.

 Feature Branches: For each new feature, a dedicated branch is created from

the develop branch. This approach isolates development work, allowing for

focused implementation and testing. Once a feature is completed and stable, it

is merged back into the develop branch.

Development workflow

The development workflow for the SODD Framework is structured as follows:

1. User Story Creation: Initially, every requirement and feature is translated into

a User Story, which is then created from the project management tool as a

GitHub Issue that requests a new functionality. These Issues are tagged based

on the feature type, such as a Scriptable Event or a Scriptable Variable, and

assigned a priority level, such as “Must Have” or “Should Have.”

2. Branch Creation: Following the selection of a User Story for development, a

dedicated branch is created from the develop branch. This new branch is directly

linked with the GitHub Issue containing the User Story, ensuring a clear and

46 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

traceable link between the development work and its corresponding

requirement.

3. Development and Pull Request: After the development of the User Story is

completed, the process continues with the creation of a pull request aimed at

merging the new features into the develop branch. This step leverages GitHub

Actions to automatically run Unity tests and generate a temporary build, verifying

the functionality and compatibility of the new features. Successful completion of

these checks allows for the merge to proceed, at which point the pull request is

closed, and the Issue is marked as completed.

4. Integration and Verification: The merging of features into the develop branch

signifies that the User Story has met all the criteria outlined in the Definition of

Done, marking the development of that feature as complete and closing the User

Story.

5. Preparation for Release: As the development progresses and the required

User Stories are completed, a pull request is prepared to transition the develop

branch into the main branch. This step involves another round of automated

Unity tests and a build process, conducted through GitHub Actions, to ensure

that the new version maintains stability and is ready for release.

6. Documentation and Release: The final step in the workflow activates further

GitHub Actions upon the successful merge into the main branch. These actions

are responsible for generating up-to-date documentation from the code and

comments, deploying this documentation to GitHub Pages. Additionally, a new

release of the framework is created using semantic versioning, accompanied by

comprehensive release notes detailing the changes. The changelog is also

updated to reflect the changes in the generated version.

Development 47

5 Development

5.1 Project Setup

This section outlines the preliminary steps taken for setting up the SODD

Framework project before commencing development.

5.1.1 Unity Package Structure

The file structure of the SODD Framework has been organized according to the

Unity standard package structure. This structure encompasses the following

components:

 package.json: This manifest file includes metadata about the package, such as

its name, version, dependencies, and additional pertinent information that

enables Unity’s Package Manager to accurately identify and manage the

package.

 README, CHANGELOG, and LICENSE: These documentation files are

essential for users of the package. The README file provides a comprehensive

description of the package, the CHANGELOG details the modifications and

updates between versions, and the LICENSE outlines the terms under which the

package is distributed.

 Runtime/: This directory contains all runtime scripts and assets that are

incorporated into the final build. These elements constitute the core of the

package and are utilized within a game or application to employ its functionality.

 Editor/: Situated here are scripts and assets that find their utility solely within the

Unity Editor; they are not included in the final game build. Commonly, this

includes custom editors, property drawers, and utilities specifically designed for

enhancing editor functionality.

 Tests/: This folder is reserved for unit and integration tests that can be executed

within the Unity Editor. The tests are critical for verifying the functionality and

reliability of the package, ensuring that each component performs as expected.

48 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

5.1.2 License

The selection of an appropriate license is a crucial decision in software project

development, delineating the legal framework within which the software can be

used, modified, and distributed. It ensures clarity regarding the legal boundaries and

freedoms of both the creators and the users of the software.

For open-source software projects, the MIT License emerges as a highly preferred

option due to its permissive nature and simplicity. The characteristics that make the

MIT License particularly appealing include:

 Simplicity and Permissiveness: The MIT License offers broad freedoms to

users and developers, allowing virtually any use of the project, including using,

copying, modifying, merging, publishing, distributing, sublicensing, and even

selling copies of the software. The only requirement is that the original copyright

and license notice be included with any substantial portion of the software

distributed. This degree of freedom makes it an attractive choice for both

commercial ventures and open-source initiatives.

 Encourages Open-Source Development: Its permissive nature not only

facilitates the use and distribution of software but also encourages active

participation in open-source development. Developers can contribute to or use

the project without the burden of navigating through restrictive licensing terms,

promoting a culture of collaboration and shared growth.

 Broad Compatibility: The MIT License is known for its compatibility with

numerous other licenses, simplifying the process of integrating multiple

opensource projects. This is particularly beneficial for developers looking to

merge different libraries or tools without encountering license incompatibilities.

 Industry Acceptance: The straightforward, lenient terms of the MIT License

have garnered wide acceptance across the software industry. Its popularity

among companies and individual developers alike furthers greater adoption and

contribution, enhancing the project's development and reach.

Development 49

5.1.3 GitHub Actions

To fulfil the Continuous Integration and Continuous Deployment (CI/CD)

requirements outlined in the planning phase of the SODD Framework, a suite of

GitHub Actions has been established within the repository. These actions are

designed to automate various aspects of the development workflow, enhancing

efficiency and ensuring adherence to quality standards:

 Branch Check: This action is activated upon pull request initiation and serves

to safeguard the integrity of the main branch by permitting merges solely from

the develop branch. By verifying the source and target branches of pull requests,

this action enforces the designated branching strategy, thereby preserving the

stability of the codebase.

 DocFX Unity Package: Triggered by pushes to the main branch or manually

through workflow_dispatch, this action utilizes DocFX to generate and update

the project's documentation automatically. The documentation is then deployed

to the gh-pages branch, ensuring that the project's documentation remains

synchronized with the latest code changes in the main branch.

 Release: Executed in response to pushes to the main branch, this action

facilitates the release process by automating the generation of semantic

versioning tags, compiles changelogs, and creates GitHub releases. This

streamlines the publication of new framework versions, maintaining an

organized and accessible record of the project's release history.

 Unity CI: This action is invoked by pull requests and can also be triggered

manually via workflow_dispatch. It is responsible for running Unity tests to

validate the framework's stability and functionality. Covering unit tests, coverage

reports, and, where applicable, integration tests, this action ensures that all

modifications adhere to the project's stringent quality criteria.

50 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

5.2 Implementation of features

Every feature in the SODD Framework has been provided with a menu entry,

hierarchically organized based on feature type (e.g., Scriptable Event, Scriptable

Variable) and data type (e.g., integer, string). This unified access point—

accessible from the Tools section in Unity’s menu—speeds up the workflow,

allowing developers to access and instantiate any ScriptableObject and Component

implementation from the framework’s dedicated menu.

Figure 11: Menu entries for the SODD Framework in Unity, organized by feature
and data type. Source: Own elaboration

5.2.1 Scriptable Events

The original concept of Scriptable Events, as introduced by Hipple, is centred

around the creation of a list of listeners. Listeners are added to or removed from this

list upon subscribing or unsubscribing. When an event is triggered, the

ScriptableObject iterates through this list, notifying each subscribed listener in turn.

Building on this concept, the implementation of Scriptable Events has been

enhanced through the integration of C# native delegates. By adopting delegates,

the system not only maintains its original functionality but also achieves a significant

improvement in performance.

Development 51

public abstract class Event<T>: ScriptableObject
{
 private event Action<T> listeners;

 public void AddListener(Action<T> listener)
 {
 listeners += listener;
 }

 public void RemoveListener(Action<T> listener)
 {
 listeners -= listener;
 }

 public void Invoke(T payload)
 {
 listeners?.Invoke(payload);
 }
}

Figure 12: Simplified code sample of the base class implementation for all
Scriptable Events. Source: Own elaboration

The naming of methods such as AddListener(), RemoveListener(), and Invoke,

instead of other names like Subscribe(), Unsubscribe(), Raise() or Trigger(), has

been a design decision to be consistent with Unity, where UnityEvents provide the

same naming. Furthermore, C# delegates also employ the Invoke() method name

for triggering events. This consistency ensures a more intuitive and unified approach

for developers familiar with the Unity ecosystem.

Custom Editor Scripts have been developed for each Scriptable Event type,

ensuring that developers can easily edit and debug event properties directly within

the Unity Inspector, adhering therefore to the project's stipulations for editability and

debuggability.

Result Evaluation

In order to evaluate the functionality of Scriptable Event implementations, a practical

use case has been proposed and tested—the management of a player’s score in a

game.

The first step involves creating an IntEvent with the goal of signaling the increment

of the player’s score by a certain amount. By naming the Scriptable Event instance

as Increment Player Score Event, its’ purpose becomes evident.

52 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 13: Inspector view of the Increment Player Score Event. Source: Own
elaboration

Testing is facilitated through the Inspector window. A developer can specify the

payload, enable the debug mode by checking the corresponding toggle, and invoke

the event using the provided button. A successful test is indicated by a new entry in

the Console, which should detail the event type, the instance name, the payload

value, and a clickable link directing to the asset that triggered the event. This log

entry not only confirms the event's invocation but also serves as a debugging tool,

providing immediate feedback and transparency.

Figure 14: Console output after invoking the Increment Player Score Event with a
payload of 5. Source: Own elaboration

Subsequently, a script dedicated to score management is developed. This script

subscribes to the Increment Player Score Event and, upon the event's invocation,

updates the player's score accordingly. The updated score is then reflected within a

UI component, visualizing the change in real-time.

Development 53

public class ScoreManager : MonoBehaviour
{
 public Event<int> onScoreIncremented;
 public TMP_Text scoreDisplay;

 private int score;

 private void OnEnable()
 {
 onScoreIncremented.AddListener(IncrementScore);
 scoreDisplay.text = score.ToString();
 }

 private void OnDisable()
 {
 onScoreIncremented.RemoveListener(IncrementScore);
 }

 private void IncrementScore(int payload)
 {
 score += payload;
 scoreDisplay.text = score.ToString();
 }
}

Figure 15: ScoreManager script subscribing to the Increment Player Score Event
and updating the score display. Source: Own elaboration

Finally, any script within the game's environment can trigger the Increment Player

Score Event, for example a coin upon colliding with the player. The ScoreManager

script, already listening for this event, receives the notification and updates the score

without requiring a direct reference to the scripts that trigger the score change. This

approach exemplifies the modular and decoupled nature of Scriptable Events, as it

allows for disparate game systems to communicate without tightly coupled

dependencies.

public class Coin: MonoBehaviour
{
 public int scoreValue;
 public Event<int> onScoreIncrementedEvent;

 private void OnCollisionEnter(Collision other)
 {
 if (other.gameObject.CompareTag("Player"))
 {
 onScoreIncrementedEvent.Invoke(scoreValue);
 Destroy(gameObject);
 }
 }
}

Figure 16: Coin script triggering the Increment Player Score Event upon collision
with the player. Source: Own elaboration

54 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

5.2.2 Event Listeners

An Event Listener has been incorporated into the framework for each Scriptable

Event type, adhering to the requirements established in the planning stage. These

Event Listeners partake in the role of components that trigger a UnityEvent

whenever the Scriptable Event they listen to is invoked.

public abstract class EventListener<T> : MonoBehaviour
{
 public Event<T> targetEvent;
 public UnityEvent<T> onEventInvoked;

 private void OnEnable()
 {
 targetEvent?.AddListener(OnEventInvoked);
 }

 private void OnDisable()
 {
 targetEvent?.RemoveListener(OnEventInvoked);
 }

 private void OnEventInvoked(T payload)
 {
 onEventInvoked?.Invoke(payload);
 }
}

Figure 17: Simplified code sampple of the base class implementation for all Event
Listeners. Source: Own elaboration

This design might initially seem redundant, but it serves an important purpose in

separating the responsibilities of Scriptable Events from UnityEvents. Scriptable

Events function as a global broadcast mechanism, allowing any component across

various scenes to subscribe and respond to the events. UnityEvents, on the other

hand, are local to the components they are attached to, allowing for the definition of

actions within a more constrained context, such as within the components of a

GameObject or Prefab.

Moreover, given that the actions reacting to a Scriptable Event are created and

modified from the Unity Event inspector, the need for changes in the code is

removed when an alteration in behavior requirements occur.

Result Evaluation

Development 55

The evaluation of Event Listener implementations expands upon the example stated

earlier in the evaluation of Scriptable Events, consisting in the management of a

player’s score.

To start, an Int Event Listener is added to the GameObject that holds the Score

Manager component. Through the Unity Inspector, the "Increment Player Score

Event" is assigned to this listener. Within the Unity Event section of the listener, the

Score Manager's method responsible for incrementing the score is called, with the

event's payload passed dynamically.

Figure 18: IntEvent Listener setup in the Unity Inspector, linking the Increment
Player Score Event to the ScoreManager's increment method. Source: Own
elaboration

This configuration decouples the Score Manager from the Int Event. Previously, the

Score Manager script would have to directly reference the event and include logic

for subscription and notification handling. With the introduction of the Event Listener,

the Score Manager is now streamlined to focus solely on score-related logic. In

practice, this means the Score Manager no longer needs to be aware of the

existence of the Scriptable event, its only concern is to update the score when

instructed.

56 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

public class ScoreManager : MonoBehaviour
{
 public TMP_Text scoreDisplay;

 private int score;

 private void OnEnable()
 {
 scoreDisplay.text = score.ToString();
 }

 public void IncrementScore(int payload)
 {
 score += payload;
 scoreDisplay.text = score.ToString();
 }
}

Figure 19: Simplified ScoreManager script after introducing Event Listeners,
focusing solely on score-related logic. Source: Own elaboration

For game designers, this modular approach is highly advantageous. They are given

the freedom to dictate game behaviours from the Unity Editor—like what happens

when a player's score needs to be updated—without modifying the underlying code.

This not only simplifies the Score Manager script but also empowers designers to

prototype, iterate, and define game behaviours with greater independence and

efficiency.

5.2.3 Scriptable Variables

In line with the set requirements, Scriptable Variables have been implemented to

encapsulate a value while furthermore providing the functionality to invoke an event

upon any change to this value. The invocation event for a Scriptable Variable is

designed using a C# delegate, mirroring the strategy employed in the

implementation of Scriptable Events.

Development 57

public abstract class Variable<T> : ScriptableObject
{
 [SerializeField] private T value;
 [SerializeField] private bool readOnly;

 private event Action<T> OnValueChanged;

 public T Value
 {
 get { return value; }
 set
 {
 if (readOnly) return;
 this.value = value;
 OnValueChanged?.Invoke(value);
 }
 }

 public void AddListener(Action<T> listener)
 {
 OnValueChanged += listener;
 }

 public void RemoveListener(Action<T> listener)
 {
 OnValueChanged -= listener;
 }
}

Figure 20: Simplified code sample of the base class implementation for all
Scritpable Variables. Source: Own elaboration

The development of Scriptable Variables also includes the creation of custom editor

scripts in order to ensure editability and debuggability.

Result Evaluation

The evaluation of Scriptable Variable implementations focuses on continuing the

use case of managing player score.

In the current arrangement, the score value is maintained within the Score Manager.

This requires any script needing to access the current score to reference the score

manager. Furthermore, the score manager bears the responsibility for both

managing the score and its display within the user interface. Ideally, the task of user

interface management should be delegated to a distinct script to ensure a

separation of concerns and enhance modularity.

58 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

As a solution, an Int Variable has been instantiated, with the purpose of storing the

current player’s score. The chosen name for the variable instance, "Player Score,"

effectively communicates its intended purpose to developers and game designers.

Figure 21: Inspector view of the Player Score Scriptable Variable with options for
setting the value, read-only status, and debug mode. Source: Own elaboration

The variable's current value is accessible within Unity's inspector, enabling

developers to observe and adjust its value both during edit mode and runtime.

Additionally, toggle options are available to restrict value modifications from scripts,

in case the variable is intended to be constant, and to activate the debug mode. The

debugging of value alterations in the variable can be easily tested by modifying the

value in the inspector with the debug mode activated, leading to the logging of these

changes in the console. The log format adheres to the format established in the

implementation of Scriptable Events, detailing the variable type, instance name, and

updated value.

Development 59

Figure 22: Console output showing the Player Score value changes with debug
mode activated, detailing the new values. Source: Own elaboration

In this stage, the Score Manager can be revised to reference this external variable,

eliminating the need to internally store the score value. Consequently, the Score

Manager now utilizes a Scriptable Variable reference, enabling the straightforward

referencing of the "Player Score" variable via drag-and-drop from the Unity

inspector. This adjustment refines the Score Manager's role to exclusively

managing score alterations in response to game events.

public class ScoreManager : MonoBehaviour
{
 public Variable<int> score;

 public void IncrementScore(int payload)
 {
 score.Value += payload;
 }

 public void ResetScore()
 {
 score.Value = 0;
 }
}

Figure 23: Revised ScoreManager script referencing an external Scriptable
Variable for managing player score. Source: Own elaboration

Finally, the development of a new script dedicated to displaying the value of the

player’s score in a UI component has been carried out. By subscribing to changes

60 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

in the variable's value, this script ensures the UI is updated in a reactive fashion.

Although this new script is aimed at presenting the current score.

public class PlayerScoreDisplay: MonoBehaviour
{
 public TMP_Text display;
 public Variable<int> score;

 private void OnEnable()
 {
 score.AddListener(UpdateDisplay);
 display.text = score.Value.ToString();
 }

 private void OnDisable()
 {
 score.RemoveListener(UpdateDisplay);
 }

 private void UpdateDisplay(int value)
 {
 display.text = value.ToString();
 }
}

Figure 24: PlayerScoreDisplay script updating the UI component with the current
player score by subscribing to the Scriptable Variable. Source: Own elaboration

This example showcases Scriptable Variables as a potent tool within game

development. When synergized with Scriptable Events, these variables facilitated

the creation of a score management system distinguished by its decoupling,

modularity, and the simplicity with which it can be edited and debugged directly from

the Unity Editor. Moreover, this system's design simplifies the process of scaling or

enhancing the game's features. For instance, implementing new functionalities such

as augmenting the score by a different value upon defeating an enemy, or resetting

the score following the player's death, can be achieved with minimal effort. These

enhancements involve the creation of new events and configuring the desired

behaviours in the Event Listener inspector, negating the necessity for direct code

modifications. This approach provides game designers with an intuitive and efficient

workflow, thereby enabling rapid iteration and testing of new game behaviours.

5.2.4 Variable Observers

Variable Observers, as delineated in the requirements, have been implemented

analogously to Event Listeners. Each Variable Observer references a Scriptable

Development 61

Variable of a specific type, subscribes for changes in its’ value, and triggers a

UnityEvent in response, passing the new value as a parameter. From the Inspector,

behavior can be defined within the UnityEvent, such as updating a value in a UI

component. Additionally, an initial state check option has been included, allowing

the observer to trigger the UnityEvent with the initial value of the variable when

enabled.

public abstract class VariableObserver<T> : MonoBehaviour
{
 public Variable<T> targetVariable;
 public bool initialValueCheck = true;
 public UnityEvent<T> onValueChanged;

 private void OnEnable()
 {
 if (initialValueCheck)
 {
 OnVariableValueChanged(targetVariable.Value);
 }
 targetVariable.AddListener(OnVariableValueChanged);
 }

 private void OnDisable()
 {
 targetVariable.RemoveListener(OnVariableValueChanged);
 }

 protected virtual void OnVariableValueChanged(T value)
 {
 onValueChanged?.Invoke(value);
 }
}

Figure 25: Simplified code sample of the base class implementation for all Variable
Observer implementations. Source: Own elaboration

Result Evaluation

The evaluation of Variable Observer implementations builds upon the previous use

case of managing player score.

Previously, the script PlayerScoreDisplay was utilized to display the value of the

Player Score variable in the UI. However, by employing an Int Variable Observer,

which includes an additional UnityEvent that converts and passes the Player Score

value as a string when it changes, the IntVariableDisplay script becomes redundant.

62 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

The function to update the UI component is specified directly within the UnityEvent

of the observer.

Figure 26: IntVariable Observer setup in the Unity Inspector, linking the Player
Score variable to the UI component for real-time updates. Source: Own
elaboration

After setting up the Variable Observer and entering Play Mode, the UI element

displaying the Player Score is initially set to the variable's value and updates

automatically whenever the variable's value changes.

This use case exemplifies how Variable Observers enhance the modularity and

responsiveness of the game architecture, ensuring that UI elements and other

components remain synchronized with the underlying data without requiring

additional scripting effort.

5.2.5 Variable Repository

The Variable Repository has been developed to manage the persistent storage and

retrieval of Scriptable Variables, ensuring efficient saving and loading of data such

as player settings and game states across game sessions.

To achieve this functionality, the Variable Repository is implemented as a

ScriptableObject containing a serialized list of Scriptable Variables. Developers can

add variables to this list that they wish to persist across game sessions. The

variables can then be loaded and saved when the game starts and closes, either

Development 63

through configuration toggles in the repository settings or manually by invoking the

provided public methods. The data is stored using binary serialization, ensuring non-

human-readable, compact, and secure storage.

Additionally, a custom editor script has been developed for the Variable Repository

for two primary purposes. First, it adds a debug option in the repository inspector to

log whenever variable data is loaded or saved. Second, it provides buttons in the

inspector for developers to manually save and load variables for testing purposes.

As a game expands in size and complexity, the number of Scriptable Variables

increases significantly. Manually adding these variables to the Variable Repository

can become a tedious task, particularly if future requirements change and some

variables no longer need to be persisted. To streamline this process, Scriptable

Variables now extend PersistentScriptableObject class, which includes a new

property displayed in the inspector: a toggle to indicate whether the specific variable

should be persisted. Subsequently, the custom Editor Script for the Variable

Repository type has been enhanced with an additional button. When clicked, this

button scans the project files for variables marked for persistence and automatically

adds them to the repository list. This feature allows for easy updates to Variable

Repositories whenever new variables with the persistence toggle enabled are

created or when existing variables need to be removed or marked as non-persistent.

Result Evaluation

The evaluation of the Variable Repository’s functionality builds upon the previous

example of handling the player’s score. In this case, two variables are used: the

existing Player Score variable and a new variable for tracking the player’s maximum

score. Both variables will be stored and retrieved whenever the game is closed and

opened.

The first step involves creating an additional Int Variable named “Max Player Score”

to store the player’s maximum score.

64 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 27: Inspector view of the Max Player Score Scriptable Variable. Source:
Own elaboration

The ScoreManager script, defined in the previous section, has been updated to

modify the Player Max Score’s value whenever the current score exceeds the

maximum score.

public class ScoreManager : MonoBehaviour
{
 public Variable<int> score;
 public Variable<int> maxScore;

 public void IncrementScore(int payload)
 {
 score.Value += payload;
 if (score.Value > maxScore.Value)
 {
 maxScore.Value = score.Value;
 }
 }

 public void ResetScore()
 {
 score.Value = 0;
 }
}

Figure 28: Updated ScoreManager script to modify the Player Max Score
whenever the current score exceeds the maximum score. Source: Own
elaboration

The next step involves creating a Variable Repository instance and specifying the

file name where the data will be stored. By enabling the options to load data when

the game starts and save it when the game closes, it is ensured that the values of

the variables remain updated during runtime and across playing sessions. The

Player Score and Max Player Score variables can then be added to the list of

variables to be persisted in the created Variable Repository.

Development 65

Figure 29: Variable Repository with Player Score and Max Player Score variables
added to the list of persistent variables. Source: Own elaboration

At this stage, testing the repository’s functionality is facilitated through the Inspector

window, where buttons allow for saving, loading, and deleting the data stored in the

file system of the variables. Additionally, enabling the debug option generates new

entries in the Unity Console for every action, providing information about the action

performed, the file path where the data is stored, and details about the affected

variables.

66 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 30: Unity Console output showing actions performed by the Variable
Repository, including saving, loading, and deleting variable data with debug
information. Source: Own elaboration

Finally, by creating a build of the game and executing it, it can be observed that

Player Score and Max Player Score are successfully persisted between game

sessions, thereby overcoming the issue of Unity not persisting ScriptableObject data

in the builds.

5.2.6 Scriptable Collections

The implementation of Scriptable Collections has been executed in alignment with

the specifications outlined during the planning phase. These implementations

include a serialized list that can be edited from the Unity inspector, the invocation of

events upon the addition and removal of items, and a debug toggle to log these

changes.

Development 67

public abstract class Collection<T> : ScriptableObject
{
 [SerializeField] private List<T> items;

 public event Action<T> OnItemAdded;
 public event Action<T> OnItemRemoved;

 public void Add(T item)
 {
 items.Add(item);
 OnItemAdded?.Invoke(item);
 }

 public void Remove(T item)
 {
 if (items.Remove(item))
 {
 OnItemRemoved?.Invoke(item);
 }
 }

 public bool Contains(T item)
 {
 return items.Contains(item);
 }
}

Figure 31: Simplified code sample of the base class implementation for all
Scriptable Collections. (Own elaboration)

Due to the nuances of Unity's serialization of lists in the inspector and the constraints

on how editor scripts interact with serialized lists, it has not been feasible to enable

log changes made to a collection directly from the inspector. Consequently, the

debugging functionality is limited to modifications performed at runtime through

scripts.

Result Evaluation

To evaluate the functionality of the Scriptable Collection implementations, a practical

use case, termed "lock and key," has been introduced. This scenario involves a door

that can only be unlocked by the player using a specific key. The level may contain

multiple doors and keys, but each door requires a distinct key to unlock.

Firstly, a GameObject Collection named "Player Inventory" has been created to

represent the player's inventory throughout the level.

68 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 32: Inspector view of the Player Inventory Scriptable Collection for
managing the player's inventory items. Source: Own elaboration

Keys are represented by GameObjects equipped with scripts that, upon collision

with the player, add themselves to the "Player Inventory" collection.

public class Key: MonoBehaviour
{
 public Collection<GameObject> inventory;

 private void OnCollisionEnter(Collision other)
 {
 if (other.gameObject.CompareTag("Player"))
 {
 inventory.Add(gameObject);
 gameObject.SetActive(false);
 }
 }
}

Figure 33: Key script adding the key GameObject to the Player Inventory collection
upon collision with the player. Source: Own elaboration

Similarly, each door is a GameObject with a script that references the inventory and

the specific key required for unlocking. When the player collides with a door, the

script checks if the required key is present in the player's inventory.

Development 69

public class Door: MonoBehaviour
{
 public GameObject key;
 public Collection<GameObject> inventory;

 private void OnCollisionEnter(Collision other)
 {
 if (other.gameObject.CompareTag("Player"))
 {
 if (inventory.Contains(key))
 {
 inventory.Remove(key);
 Unlock();
 }
 }
 }

 private void Unlock()
 {
 // Logic to open the door
 }
}

Figure 34: Door script checking the player's inventory for the required key and
unlocking the door upon collision with the player. Source: Own elaboration

Moreover, an additional script has been implemented to display the number of keys

in the player's inventory on a UI element. This script responds to the addition and

removal events in the collection by updating a counter accordingly.

public class KeyCountDisplay : MonoBehaviour
{
 public TMP_Text display;
 public Collection<GameObject> inventory;

 private void OnEnable()
 {
 inventory.OnItemAdded.AddListener(UpdateUI);
 inventory.OnItemRemoved.AddListener(UpdateUI);
 }

 private void OnDisable()
 {
 inventory.OnItemAdded.RemoveListener(UpdateUI);
 inventory.OnItemRemoved.RemoveListener(UpdateUI);
 }

 private void UpdateUI(GameObject item)
 {
 display.text = inventory.Count.ToString();
 }
}

Figure 35: KeyCountDisplay script updating the UI element to reflect the number of
keys in the player's inventory. Source: Own elaboration

70 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

This example highlights the benefits of utilizing Scriptable Collections, as it

demonstrates how different systems can interact with and modify a shared collection

in a manner that is both decoupled and efficient.

5.2.7 Input Action Handlers

Input Action Handlers have been implemented to translate Unity’s Input System

actions into the framework's Scriptable Events. Each handler is responsible for a

single Input Action, monitoring its events when the action is started, performed, and

cancelled, and triggering a corresponding Scriptable Event in response.

public abstract class InputActionHandler<T> : ScriptableObject
{
 public InputActionReference reference;
 public Event<T> onActionStarted;
 public Event<T> onActionPerformed;
 public Event<T> onActionCanceled;

 private void OnEnable()
 {
 reference.action.started += OnStarted;
 reference.action.performed += OnPerformed;
 reference.action.canceled += OnCanceled;
 reference.action.Enable();
 }

 private void OnDisable()
 {
 reference.action.started -= OnStarted;
 reference.action.performed -= OnPerformed;
 reference.action.canceled -= OnCanceled;
 reference.action.Disable();
 }

 private void OnStarted(InputAction.CallbackContext context)
 {
 onActionStarted.Invoke(context.ReadValue<T>());
 }

 private void OnPerformed(InputAction.CallbackContext context)
 {
 onActionPerformed.Invoke(context.ReadValue<T>());
 }

 private void OnCanceled(InputAction.CallbackContext context)
 {
 onActionCanceled.Invoke(context.ReadValue<T>());
 }
}

Development 71

Figure 36: Simplified code sample of the base class implementation for all Input
Action Handler implementations. Source: Own elaboration

The implementation of Input Action Handlers accommodates various data types,

contingent on the nature of the Input Action. For instance, a Bool Action Handler

manages actions involving buttons, using a Boolean value to indicate whether the

button is pressed or released. Another example is a Vector2 Action Handler, which

manages actions involving two-dimensional axis, such as a joystick.

Result Evaluation

To evaluate the functionality of the Input Action Handler implementations, a practical

use case involving player movement has been tested.

Initially, an InputAction asset was created and configured with an action named

"Move," which reads the 2D vector input from the left joystick of a gamepad.

Figure 37: InputAction asset configuration for player movement, reading 2D vector
input from the left joystick of a gamepad. Source: Own elaboration

Subsequently, a Vector2 Action Handler, named "Move Action Handler," was

created to manage the "Move" action in the previously configured InputAction asset.

The next step involved creating the respective Scriptable Events that would be

triggered by the handler in response to the input action. For this case, a single

Vector2 Event, named "On Player Move," was created. This event carries a 2D

vector payload representing the joystick's value during each phase of the action.

72 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 38: Move Action Handler setup in the Unity Inspector, linking the "Move"
InputAction to the "On Player Move" Vector2 Event for handling player movement.
Source: Own elaboration

Upon completing this setup, the debug option for the "On Player Move" event was

activated. By running Play Mode and moving the left joystick on a connected

gamepad, new entries appeared in the Unity Console, indicating invocations of the

event. This confirms that the Input Action Handler is functioning correctly.

Figure 39: Unity Console output showing the "On Player Move" event invocations
with vector payloads, confirming the Input Action Handler functionality. Source:
Own elaboration

With this configuration, a player script can listen for the "On Player Move" event,

either directly or through the previously demonstrated Event Listeners, to execute

the game logic required for moving the player. This approach ensures that the player

movement logic is cleanly separated from the input reading logic, and can be easily

adjusted or expanded upon, adhering to principles of modular and decoupled

design.

Development 73

5.2.8 Control Scheme Handler

The Control Scheme Handler has been implemented as specified in the

requirements to manage changes in Input Control Schemes. This handler listens for

generic input events within Unity’s Input System and determines the active Control

Scheme in its referenced Input Action Asset based on the current device triggering

the input event. Upon detecting a change in the Control Scheme, the handler can

invoke a Scriptable Event, if a reference is provided, or set the current control

scheme to a Scriptable Variable, if a reference is available.

public class ControlSchemeHandler : ScriptableObject
{
 public InputActionAsset inputActionAsset;
 public Event<string> onControlSchemeChanged;
 public Variable<string> currentControlScheme;

 private InputDevice current;

 private void OnEnable()
 {
 InputSystem.onEvent += OnInputEvent;
 }

 private void OnDisable()
 {
 InputSystem.onEvent -= OnInputEvent;
 }

 private void OnInputEvent(InputEventPtr e, InputDevice device)
 {
 if (current != null && current == device) return;

 current = device;

 var controlScheme = inputActionAsset
 .controlSchemes
 .First(scheme => scheme.SupportsDevice(device));

 if (onControlSchemeChanged)
 {
 onControlSchemeChanged.Invoke(controlScheme.name);
 }
 if (currentControlScheme)
 {
 currentControlScheme.Value = controlScheme.name;
 }
 }
}

Figure 40: Simplified code sample of the Control Scheme Handler class
implementation. (Own elaboration)

74 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Since Unity’s Input System triggers the generic input events tracked by the Control

Scheme Handler even during editor time, tests can be conducted without entering

play mode. However, this may lead to undesired behaviors during editor time and

create performance overheads. To mitigate this issue, a toggle option has been

created, allowing developers to decide whether Control Scheme Handlers should

run in editor mode or exclusively at runtime.

Figure 41: Inspector view of the Control Scheme Handler setup for managing
changes in Input Control Schemes. Source: Own elaboration

Result Evaluation

To evaluate the functionality of the Control Scheme Handler, a practical use case

involving dynamic control scheme switching has been tested. This scenario involves

the creation of an input action asset with two control schemes: one for keyboard and

mouse and another for gamepad. A StringEvent was created to carry the scheme

change event and a StringVariable to be modified whenever the control scheme

changes. An instance of the Control Scheme Handler was then created and the

values assigned.

Development 75

Figure 42: Adding the "Console" control scheme with the required Gamepad
device. Source: Own elaboration.

Figure 43: Adding the "PC" control scheme with the required Keyboard and Mouse
devices. Source: Own elaboration.

Given that previous evaluations of Scriptable Events and Variables have

demonstrated their proper functioning, the testing of Control Scheme Handlers can

be reliably conducted in Editor Mode. By enabling the debug option of both the

created StringEvent and StringVariable, it can be ensured that new log entries

appear in the Console when the control scheme changes.

By performing actions such as moving the mouse or pressing keyboard keys, logs

of the event being triggered and the variable being set to the name of the control

scheme supporting keyboard and mouse successfully appear in the Console.

Similarly, when performing any input action with a connected gamepad, such as

moving a joystick or pressing a button, the appropriate logs are observed, confirming

the correct functionality of the Control Scheme Handler.

76 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 44: Debug information logged in the Console regarding the invocation of the
created Scriptable Event and the value changes of the created Scriptable Variable.
Source: Own elaboration

5.2.9 Passive ScriptableObjects

Unity does not load ScriptableObjects into memory during runtime unless they are

referenced in a scene. Features of the SODD Framework, such as Input Action

Handlers or Control Scheme Handlers, are not directly referenced in scenes—they

exist passively in the file system and interact with the framework’s ScriptableObject-

based systems. Therefore, these implementations require a mechanism to ensure

they are loaded into memory during runtime.

To address this, a new concept called Passive ScriptableObjects has been

introduced. This is represented by an abstract class that inherits from the

ScriptableObject type. Passive ScriptableObjects are ScriptableObjects that don’t

populate a scene but provide functionality passively as assets loaded into memory.

Each Passive ScriptableObject includes a toggle option in the Inspector, which is

enabled by default, indicating whether the specific instance should be loaded into

memory.

Development 77

Figure 45: A Move Action Handler—now inheriting from the new Passive
ScriptableObject type—with the reference toggle activated, indicating that it needs
to be passively loaded into memory. Source: Own elaboration

The final element to ensure these Passive ScriptableObjects are loaded consists in

a new menu option has been added to the SODD Framework’s Menu. This menu

option triggers a functionality that scans the project files for Passive

ScriptableObjects with the enabled toggle option. It then creates a GameObject with

a Component that contains a list of all the collected Passive ScriptableObjects.

Figure 46: The created menu command, responsible for referencing Passive
ScriptableObjects in the scenes. Source: Own elaboration

The generated GameObject is added to all the scenes that will be included in the

final build. The sole purpose of this created GameObject is to reference the Passive

ScriptableObjects, ensuring they are loaded into memory during runtime.

78 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 47: The generated GameObject, containing the references of all Passive
ScriptableObjects in a project. Source: Own elaboration

This menu command is an effective solution to the problem given the project's time

constraints, but more efficient solutions may be explored for the future of the

framework.

Development 79

5.3 Developing a Sample Videogame

This section details the development of a small video game using the

ScriptableObject Driven Development (SODD) tools provided by the framework.

The aim is to demonstrate the usability, reliability, and viability of these tools in a

practical game development scenario.

It is important to note that various aspects of the development process that do not

directly pertain to the utilization of SODD Framework’s features have been omitted

from this section. These aspects include, but are not limited to:

 Level design.

 Setting up scenes, layer masks, collision detection and other environment

configurations.

 Setting up animations and animation state machines.

 User interface design and implementation.

 Asset management and importing

5.3.1 Game Proposal

Overview

 Title: Ice Heat

 Description: Ice Heat is a 2D level-based platformer inspired by the videogame

“Celeste”.

 Concept: In Ice Heat, players take control of a character with the unique power

of producing temperature expansion waves to boil or freeze water around them,

overcoming platforming challenges to progress through the levels of the game.

Game Mechanics

80 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

 Jump: The player can perform a quick, short jump with a brief press of the jump

button. Holding the jump button allows for a higher and longer jump. This

mechanic provides basic platforming functionality, common in 2D platformers.

 Directional Dash: The player can dash in a specified direction by pointing to the

direction and pressing the dash button. Horizontal and vertical movement are

completely arrested before and after the dash, ensuring a predictable behaviour

even when moving. This mechanic allows the player to quickly move across the

screen, aiding in overcoming larger gaps and avoiding obstacles.

 Temperature Wave: By holding a button, time slows down, and a small UI in the

form of a radial menu appears, letting the player choose to perform either a

heating or cooling temperature wave. This mechanic enables the player to

manipulate the state of water, which is essential for navigating through the levels.

Game Elements

 Water Platforming: Water platforming is a central gameplay mechanic in Ice

Heat. Water exists in three states, each affecting the player's ability to navigate

levels:

o Ice: As a solid state, ice serves as walkable platforms or obstacles. It can

be transformed into normal water with a heating wave, allowing players

to create or remove solid ground as needed.

o Normal Water: Players can swim through normal water, which can slow

their momentum, particularly when falling. This state can be turned into

ice with a cooling wave or boiling water with a heating wave.

o Boiling Water: Boiling water produces high-pressure vapour, propelling

the player upwards. It can be cooled into normal water, adding a vertical

dimension to platforming and enabling quick escapes or access to higher

platforms.

 Collectible Coins: Each level contains a collectible coin placed in difficult-to-

reach locations, which require mastering game mechanics in order to collect

Development 81

them. Once collected, the coins are displayed above their respective levels in

the selection menu, offering visual progress tracking.

Game Structure

Ice Heat" is structured into three levels, each becoming available once the previous

one has been completed. This progression system ensures a steady increase in

difficulty and complexity.

The first level serves as a tutorial for the dash mechanic, guiding players on how to

use the directional dash to overcome obstacles and navigate the environment

effectively.

The second level acts as a tutorial for the temperature wave mechanic. Players learn

to slow down time and choose between heating and cooling waves to manipulate

the state of water.

The third and final level puts the combination of the dash and temperature wave

mechanics to the test. Players must use their acquired skills in tandem to navigate

through tougher platforming challenges. This level integrates all the learned

mechanics, providing a comprehensive test of the player's abilities and mastery of

the game.

5.3.2 Setup

The setup of Ice Heat involves creating a new Unity 2D project, using the same

Unity version selected for the framework: 2022.3 LTS. Subsequently, the SODD

Framework is imported via UPM using the URL of the repository that hosts the

framework on GitHub. During the import process, Unity automatically includes the

package dependencies, which consist of Unity's Input System and the Text Mesh

Pro package.

5.3.3 Input Management

The management of input in Ice Heat involves the creation of an Input Action asset,

encompassing Action Maps, Control Schemes, Input Actions, and Input Bindings.

82 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Action Maps

Two primary action maps have been defined to delineate the context of player

interactions:

1. Gameplay: This map covers actions that are pertinent during gameplay, such

as Move, Jump, Dash, and Select Temperature. These actions represent

fundamental mechanics that the player will utilize while engaging with the game.

2. UI: This map contains actions relevant to menu navigation, providing a set of

interactions when the player is outside of the core gameplay environment.

Control Schemes

To accommodate different input devices, two control schemes are established. One

configured to support players using a gamepad and another designed for players

utilizing a keyboard and mouse.

Input Actions and Bindings

Within the Gameplay action map, each input action is tied to a specific game

mechanic.

 Move: Handles player movement.

 Jump: Manages the jumping mechanic.

 Dash: Controls the dashing action.

 Select Temperature: Triggers the process of selecting whether to produce a

heating expansion wave, or a cooling one.

Each action is configured with two input bindings corresponding to the two control

schemes. This configuration step showcases the versatility of Unity’s Input System,

which translates diverse device inputs into unified game actions that define how the

player interacts with the game.

Development 83

Figure 48: Input Action asset setup with Action Maps for Gameplay and UI, including
bindings for both keyboard and gamepad control schemes. Source: Own elaboration

Input Action Handlers

For each defined action, an Input Action Handler is created. These handlers are

responsible for processing the input and triggering corresponding Scriptable Events

and Scriptable Variables. The events and variables referenced by these handlers

will be added in future stages, once the game scripts define how they need to access

the input data.

Figure 49: Project view of the created Input Action Handlers. Source: Own
elaboration

84 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

5.3.4 Player Control

To create a comprehensive player control system, a set of scripts have been

developed, each focusing on a specific aspect of player control. This modular

approach ensures that each script can be independently managed and maintained,

promoting a clean and organized codebase.

Movement

The MovementController script is designed to read from a Scriptable Variable that

holds the desired direction for player movement. It moves the player's Rigidbody

horizontally based on this direction, governed by parameters for movement speed

and the time required to reach full speed. This latter parameter provides a smoother

transition between the player being stationary and moving, enhancing the fluidity of

the movement.

public class MovementController : MonoBehaviour
{
 [Header("References")]
 [SerializeField] private Rigidbody2D rigidBody;

 [Header("Parameters")]
 [SerializeField] private ValueReference<Vector2> direction;
 [SerializeField] private ValueReference<float> speed;
 [SerializeField] private ValueReference<float> smoothTime;

 // Movement logic
}

Figure 50: Code fragment showing the parameters of the MovementController
script.

The script’s behaviour is entirely dependent on these parameters, which are

exposed in the Unity Inspector. This exposure facilitates a data-driven design,

allowing developers to adjust movement characteristics without altering the code.

Additionally, all parameter values are referenced through a Value Reference. This

allows for flexibility in switching between directly inputted values in the script's editor

or references to Scriptable Variables. This design pattern ensures adherence to

good practices discussed in this document and is consistently applied throughout

the development of all game scripts.

Development 85

Figure 51: MovementController script setup in the Unity Inspector, using Scriptable
Variables for direction, speed, and smoothing time parameters. Source: Own
elaboration

The MovementController script introduces the first input requirement: a Scriptable

Variable that holds the real-time direction in which the player is pointing. To meet

this requirement, a Vector2 Variable can be created. This variable is referenced by

both the MovementController script and the Input Action Handler responsible for the

Move action. The Input Action Handler dynamically updates the variable based on

the player's input, ensuring that the player's direction is accurately reflected in real-

time.

Jump

The JumpController script is designed to manage the vertical movement of the

player. It utilizes a set of parameters encapsulated as Value References, including

the minimum and maximum height of the jump and the time required to reach the

apex of the jump trajectory. These parameters can be adjusted in real-time using

Scriptable Variables, allowing developers to fine-tune the jump mechanics until the

desired movement and feel are achieved. As Scriptable Variables are

ScriptableObjects, they retain their values even after exiting Play Mode, ensuring

persistence and consistency.

86 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 52: JumpController script setup in the Unity Inspector, managing jump
mechanics with Scriptable Variables for parameters and UnityEvents for additional
behaviors. Source: Own elaboration

The JumpController script references two particular variables, isGrounded and

canJump, which are updated by external scripts. The isGrounded Boolean value

is set to true when an external ground detection systems confirms that the player is

colliding with the ground. By delegating collision detection to another script, the

JumpController remains focused solely on managing jump logic, enhancing

modularity. The canJump Boolean value is used by game mechanics, such as the

Dash, to reset the player's ability to jump while airborne.

The script necessitates a Boolean value to indicate whether the player intends to

jump, updated in real-time based on input. This Boolean value influences the height

of the jump, determined by the duration the jump button is pressed. A Bool Variable

is created for this purpose and referenced by both the JumpController and the Input

Action Handler responsible for the Jump action.

Lastly, it is important to remark that a UnityEvent is invoked whenever the player

performs a jump. This event can be linked to additional behaviours, such as

Development 87

spawning particles, playing sounds, or triggering animations. This extensibility

allows new features to be added without modifying the JumpController script,

maintaining its single responsibility for managing jump logic. By leveraging

UnityEvents, the system remains adaptable and scalable as game requirements

evolve.

Dash

The DashController script adheres to the same principles of exposing all parameters

in the Unity Inspector and encapsulating them with ValueReferences. Since the

dash mechanic is directional and depends on the player's orientation, this script

references the same Vector2 Variable used by the previously discussed

MovementController, which holds the current input direction set by the Input Action

Handler.

Figure 53: DashController script setup in the Unity Inspector, managing dash
mechanics with Scriptable Variables for parameters and UnityEvents for additional

behaviors. Source: Own elaboration

88 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

An additional input requirement for the DashController is to start the dash whenever

the Dash button is pressed. This is accomplished by creating a Void Event and

referencing it in the Input Action Handler responsible for the Dash action. This setup

ensures that the event is invoked whenever the Dash button is pressed. A Void

Event Listener is then added alongside the DashController, referencing this Void

Event. The provided UnityEvent in the listener is used to hook the DashController's

dash execution method.

Figure 54: VoidEvent Listener setup in the Unity Inspector, linking the "On Dash
Input Event" to the DashController's dash execution method. Source: Own

elaboration

Similar to the JumpController script, the DashController offers UnityEvents for

intrinsic events such as when the dash begins and ends. These UnityEvents

facilitate the specification of additional behaviors without altering the code, thus

promoting scalability. For example, figure 61 illustrates how the UnityEvent sets the

canJump Bool Variable to true, enabling the player to jump again while airborne

after performing a dash.

Temperature Waves

This mechanic is more intricate than the previously described mechanics and

requires multiple single-responsibility scripts, orchestrated through Scriptable

Events, Scriptable Variables, and UnityEvents.

Firstly, the script PlayerSelectionController is activated whenever the temperature

selection button is held down. This behavior is facilitated with two Void Events,

referenced in the Input Action Handler. One event is triggered when the button

begins to be pressed, and the other is triggered upon release. While the button is

pressed and the selection script is active, it reads the current player direction by

referencing the Vector2 Variable used for player direction. This direction selection

Development 89

is visually represented in the game UI, which displays two options for the player:

right for heating and left for cooling.

When the selection button is released, the PlayerSelectionController script reads

the current direction. Based on whether the direction is right or left, it triggers a

corresponding UnityEvent. These UnityEvents are then connected to various scripts

that perform visual and functional effects for the expansion wave. These effects

include:

 Changing Player Color: Adjusting the player's material variables to reflect the

heating or cooling selection.

 Animating the Expansion Wave: Creating a visual animation that shows the

expansion wave emanating from the player.

 Water State Detection: Detecting water within the area of the expansion wave

and changing its state accordingly (e.g., heating or cooling the water).

The integration of these scripts through Scriptable Events and UnityEvents ensures

a modular and decoupled design. Each script handles a specific aspect of the

mechanic, from player input to visual feedback and environmental interactions. This

separation of concerns not only simplifies the development process but also

enhances the maintainability and scalability of the codebase. Developers can easily

tweak or extend individual components without affecting the overall system.

Results

During the development of player controls, a distinction has been made regarding

the Scriptable Variables used in the player's functionality. These variables fall into

two categories:

 Parameters: Read by the scripts to define the player's behaviour, such as

movement speed, jump height, and dash duration. These are generally static

and are used to configure the player's capabilities.

 Runtime Variables: Dynamically updated by the scripts to reflect the current

state of the player, such as the player's current direction, whether they are

90 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

grounded, and if they can perform another jump or dash. These variables change

during gameplay and are crucial for the real-time functionality of the player.

To organize these variables efficiently, they have been grouped into two distinct

folders within the file system. Both of these folders are nested within a parent folder

that clearly indicates these Scriptable Variables belong to the player.

Figure 55: Organized folder structure for Player Scriptable Variables, separating
parameters and runtime variables. Source: Own elaboration

This organization provides a single point of access to all the parameters and the

runtime state of the player. Consequently, developers and designers can easily

access, consult, and modify these variables either in Editor Mode or Play Mode.

This setup eliminates the need to navigate through the scripts and GameObjects

that make up the player's Prefab, streamlining the development, testing and

debugging process.

Development 91

5.3.5 Collectible Coins

As outlined in the game proposal, each level contains a collectible coin that players

can obtain by navigating platforming challenges. The mechanism governing these

coins is straightforward: it detects collisions with the player and notifies a Collectible

script.

Each coin has an assigned Bool Variable, referenced through a Value Reference,

indicating whether the coin has already been collected. This Bool Variable ensures

that collected coins are not visible in the level, while those that still need to be

collected remain visible. Upon collection, the Bool Variable's state of the specific

coin is set to true, marking it as collected.

public class Collectible : MonoBehaviour
{
 [SerializeField] private ValueReference<bool> isCollected;

 private void OnEnable()
 {
 gameObject.SetActive(!isCollected.Value);
 }

 public void OnCollected()
 {
 isCollected.Value = true;
 gameObject.SetActive(false);
 }
}

Figure 56: Collectible script using a Bool Variable to manage the visibility and state
of collectible coins. Source: Own elaboration

The use of these Bool Variables play a role in the UI system for the level selection

menu, displaying which coins have been collected. This provides players with a

clear visual representation of their progress. Moreover, the state of these variables

is intended to be persisted across game sessions, ensuring that players' progress

is saved and maintained. The implementation and management of this persistence

will be further detailed in the section dedicated to Variable Repositories.

92 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

5.3.6 UI Management

Level Selection

To ensure that levels cannot be accessed until the previous level has been

completed—with the exception of the first level—the level selection menu needs to

dynamically enable or disable access to levels based on the player's progress

Each level selection button incorporates a LevelSelectionController script. This

script references a Bool Variable that indicates whether the level is available.

External systems are responsible for updating these Bool Variables to reflect the

player's progress, ensuring a clear separation of concerns. The

LevelSelectionController script itself does not handle the logic for determining

level availability; it merely references the variable to enable or disable the level

button based on its state.

Figure 57: LevelSelectionController script setup, using a Bool Variable to manage
the availability of levels and invoking a StringEvent if the level is blocked. Source:

Own elaboration

Displaying Collected Coins

The level buttons exhibit different appearances and interaction behaviours

depending on whether they are enabled or disabled. The LevelSelectionController

script manages such behaviours, ensuring that each button reflects its current state

accurately.

On the other hand, displaying a collected coin on top of the level button when a coin

has been collected in that level is a simpler behaviour, which can be managed by

leveraging Variable Observers. Each level button includes a Variable Observer that

Development 93

references the Bool Variable indicating whether a coin has been collected in that

specific level. The state of this variable is transmitted to an attached UnityEvent,

which is linked to the UI component responsible for displaying the coin. When the

BoolVariable indicates that the coin has been collected, the UI component is

dynamically enabled to display the coin; otherwise, it remains disabled.

Figure 58: BoolVariable Observer setup to display a collected coin on the level
button by dynamically enabling the UI component based on the Bool Variable

state. Source: Own elaboration

In-Level Tutorial Prompts

Another crucial functionality is the implementation of HUD prompts that teach the

player how to use the controls during the first two levels, which serve as a tutorial

for the game's mechanics. This feature ensures that players are guided effectively

through the initial stages of the game, enhancing their learning experience.

Figure 59: In-level tutorial prompt guiding the player on how to use the directional
dash mechanic. Source: Own elaboration

94 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Initially, a Heads-Up Display (HUD) element is created to display tutorial prompts,

including a text component with an accompanying script that animates the alpha

channel. This animation creates a fade-in and fade-out effect, drawing the player's

attention to the prompts in a non-intrusive manner.

To manage the display of these tutorial prompts, two Void Events are defined: one

to show the prompts and another to hide them. These events enable the prompts to

be displayed and hidden at the appropriate times without embedding the logic

directly into the gameplay scripts. A Void Event Listener is attached to the HUD,

referencing these Void Events. The listener calls the necessary functions within the

HUD script to control the visibility of the tutorial prompts, ensuring that the logic for

displaying the prompts remains modular and easily adjustable.

Figure 60: TextOpacityAnimator script setup with VoidEvent Listeners to manage
the display and hide events for in-level tutorial prompts. Source: Own elaboration

To trigger the display of the tutorial prompts, a collision detection script is added to

specific areas within the levels. When the player enters a designated area, the

collision detector triggers the Void Event to show the tutorial prompt. Conversely,

when the player exits the area, the event to hide the prompt is triggered. This use

of Void Events and Event Listeners decouples the tutorial prompt logic from the main

gameplay scripts, providing greater flexibility and maintainability.

Development 95

Dynamic Input Icons

In modern video games, displaying dynamic input icons in the UI is crucial for

informing players how to interact with the game. These icons must change

dynamically based on the input device currently in use, such as displaying keyboard

icons when using a keyboard and mouse, or gamepad icons when using a

gamepad. This feature is particularly important for tutorial levels, which instruct

players on how to perform game mechanics like dashing or temperature waves, and

for the settings menu, which provides a comprehensive overview of all game

controls.

Figure 61: Settings menu displaying input icons based on the current input device,
providing players with updated control information. Source: Own elaboration

In Ice Heat, this feature can be achieved by leveraging SODD Framework’s Control

Scheme Handlers. The implementation begins with the creation of a Control

Scheme Handler instance. This handler is assigned the game’s input action asset

and is responsible for managing the current control scheme. A String Variable is

added to the handler to hold the name of the current control scheme. This variable

dynamically updates to reflect changes in the control scheme, ensuring that the

correct icons are displayed based on the input device in use.

Next, it is necessary to map the input bindings of actions based on the current

control scheme. For example, the binding for jumping is the 'Z' key on the keyboard

and mouse control scheme and the 'A' button on the gamepad control scheme. To

facilitate this mapping, an Input Icon Repository is created. This ScriptableObject

holds a mapping of input bindings to their respective input icons, providing a

centralized repository for managing these icons.

96 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 62: Input Icon Repository setup in the Unity Inspector, mapping input
bindings to their respective icons for different control schemes. Source: Own

elaboration

An InputIconProvider script is then created to handle the dynamic updating of input

icons. This script references an Input Action, the created Input Icon Repository, a

Sprite Asset, and the String Variable holding the current control scheme. A Sprite

Asset, provided by the Unity Text Mesh Pro package, contains a collection of sprites

that can be used as inline icons within text components, allowing for dynamic icon

changes.

Figure 63: Jump Icon Provider setup in the Unity Inspector, linking the Jump action
to the Input Icon Repository and dynamically updating the sprite based on the

current control scheme. Source: Own elaboration

Development 97

The InputIconProvider listens for changes in the control scheme. When a change

is detected, it searches the referenced input action for the input binding associated

with the current control scheme. Once the appropriate binding is found, the script

retrieves the corresponding input icon from the icon repository and updates the

Sprite Asset with the new icon. Text components that reference this Sprite Asset will

automatically update to display the new icon, ensuring that the UI reflects the current

input device.

It is important to note that InputIconProviders have been made to inherit from

PassiveScriptableObject, which will allow them to be passively referenced in

scenes alongside other Passive ScriptableObjects, such as Input Action Handlers,

since they are not actively referenced in scenes and provide functionality exclusively

from the project files.

Finally, an InputIconProvider is created for each action, with a respective Sprite

Asset to display the icon for each action. This setup ensures that all text components

dynamically reflect the correct input icons based on the player's current control

scheme, enhancing the usability and accessibility of the game.

5.3.7 Audio System

A notable application of the SODD Framework’s Scriptable Events is in the creation

of a decoupled and flexible audio system, allowing for centralized management and

playback of audio events across the game.

The foundation of the audio system is the Audio Repository, a custom

ScriptableObject that contains a map linking the names of audio events occurring in

the game to the corresponding audio clips that should be played in response. This

audio map can be easily accessed and modified through the Unity Inspector,

facilitating the addition of new audio events and clips as the game evolves. This

approach ensures that audio management remains centralized and easily

maintainable.

98 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 64: Audio Repository setup in the Unity Inspector, mapping audio events to
corresponding audio clips. Source: Own elaboration

Next, an AudioManager script is created. This script references an Audio Source

component designated for playing audio clips and the Audio Repository. The

AudioManager script is responsible for handling the playback of audio clips based

on events received.

To handle audio events, a String Event is created. This event represents an audio

event and carries the name of the audio event as its payload. By using a String

Event Listener, this event is linked to the AudioManager. When an audio event

occurs, the String Event Listener triggers the AudioManager to play the

corresponding audio clip from the Audio Repository.

Development 99

Figure 65: AudioManager script setup in the Unity Inspector, using a StringEvent
Listener to trigger audio playback from the Audio Repository based on received

events. Source: Own elaboration

This entire setup is encapsulated within an Audio Manager prefab. This prefab

includes the AudioManager script, the Audio Source component, and references

to the Audio Repository and String Event Listener. The prefab can be added to any

scene, eliminating the need to manually add references or configure settings in each

scene. All communication to trigger audio playback is handled through the String

Event, which is stored in the file system.

5.3.8 Game Settings

Scriptable Variables can also be utilized for managing game settings, specifically

audio settings within the context of Ice Heat. Due to time constraints, the

implementation is limited to audio settings, excluding graphics settings and input

rebinding.

The setup begins with the creation of a Float Variable for each audio setting: master

volume, music volume, and FX volume. An audio mixer is configured with a separate

mixing group for each audio setting, with each group having an exposed parameter

for volume control. These mixing groups are then assigned to the audio sources

managed by the previously created Audio Manager.

100 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 66: Audio mixer setup in Unity, with separate mixing groups for master, FX,
and music volumes, each with an exposed volume parameter. Source: Own

elaboration

To manage these settings, a VolumeController script is developed. This script

functions as another PassiveScriptableObject, providing functionality from the

project files. It takes as parameters a Float Variable representing the volume, the

audio mixer, and the name of the parameter to modify within the audio mixer.

Initially, it sets the audio mixer’s volume to match the Float Variable’s value and

listens for changes in the variable to reactively adjust the volume. To ensure correct

behavior, the value of the Float Variable is clamped to a range of 0 to 100,

representing the percentage of volume. This requirement suggests a potential future

enhancement for the framework: the addition of value constraints to Scriptable

Variables.

Development 101

public class VolumeController : PassiveScriptableObject
{
 [SerializeField] private Variable<float> volume;
 [SerializeField] private AudioMixer mixer;
 [SerializeField] private string parameterName;

 private void OnEnable()
 {
 SetVolume(volume.Value);
 volume.AddListener(SetVolume);
 }

 private void OnDisable()
 {
 volume.RemoveListener(SetVolume);
 }

 private void SetVolume(float volumePercent)
 {
 mixer.SetFloat(name, Mathf.Log10(volumePercent / 100) * 20);
 }
}

Figure 67: VolumeController script setting audio mixer volumes based on Float
Variables and updating them dynamically on value changes. Source: Own

elaboration

A VolumeController instance is created for each mixing group, resulting in

controllers for master volume, music, and audio effects. Each VolumeController is

configured with its respective Float Variable, audio mixer, and parameter name

corresponding to the mixer volume of its group.

Figure 68: VolumeController instance setup in the Unity Inspector for managing
music volume, referencing the Float Variable, Audio Mixer, and parameter name.

Source: Own elaboration

The final step involves displaying these audio settings in the game’s settings menu,

allowing for visualization and modification. For each volume setting, a Slider and a

Text component are created. The Slider allows users to adjust the volume, while the

102 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Text component displays the exact volume percentage. Using the Slider’s integrated

UnityEvent, which triggers whenever the slider’s value changes, and Variable

Observers, no additional scripting is required. The Slider’s UnityEvent, on one hand,

sets the value of the corresponding Float Variable. On the other hand, the Variable

Observer monitors changes to the Float Variable and uses its UnityEvent to update

the slider and text components accordingly.

Figure 69: Settings menu setup with Slider and Text components for audio volume
control, utilizing UnityEvents and Variable Observers to manage value changes

and display updates. Source: Own elaboration

This setup provides a robust, modular, and scalable system for managing audio

settings within the game. By leveraging Scriptable Variables, VolumeControllers,

and UnityEvents, the system ensures that changes to audio settings are dynamically

Development 103

reflected in real-time, offering a flexible and easily editable solution for game settings

management. This approach aligns with the best practices discussed in this

document, supporting efficient and maintainable game development.

Figure 70: Resulting settings menu displaying audio volume sliders for Master,
Music, and Effects. Source: Own elaboration

5.3.9 ScriptableObject Managers

One of the key teachings of Ryan Hipple in game architecture with ScriptableObjects

is their use in creating game managers. This approach provides all the benefits of

Singletons, commonly used for creating managers, but without the associated

drawbacks. ScriptableObject managers facilitate modular and decoupled design,

improving scalability and maintainability.

Game Manager

An example of this principle in Ice Heat is the Game Manager ScriptableObject,

which provides public methods for performing simple game flow actions, such as

changing the time scale or loading scenes.

104 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

public class GameManager: ScriptableObject
{
 public void SetTimeScale(float scale)
 {
 Time.timeScale = scale;
 }

 public void LoadScene(string name)
 {
 SceneManager.LoadScene(name);
 }

 public void Quit()
 {
 Application.Quit();
 }
}

Figure 71: GameManager ScriptableObject with methods to control time scale,
load scenes, and quit the application. Source: Own elaboration

Its nature as a ScriptableObject allows it to be referenced anywhere in different

scenes while staying loaded in memory between scenes. Practical uses of the

Game Manager include adjusting the time scale to a slower rate when beginning the

temperature selection for the player’s expansion wave, setting it to 0 when pausing

the game, changing scenes when a level is selected, or exiting the application.

Figure 72: Unity Inspector showing the On Click event of the game’s exit button
setup to invoke the GameManager's Quit method and play a UI confirmation

sound. Source: Own elaboration

Level Manager

Another example is the Level Manager, which holds references to the Bool Variables

indicating the availability of the levels and controls the flow between levels. Since

both the Level Manager and Game Manager are ScriptableObjects, the Level

Manager can reference the Game Manager and call its methods when changing

levels. This separation of concerns ensures that if scene loading logic changes in

the future, such as displaying a loading screen while loading asynchronously, the

Development 105

Level Manager does not need to know about these changes; it simply continues to

call the same method in the Game Manager.

public class LevelManager : ScriptableObject
{
 public GameManager gameManager;
 public List<Variable<bool>> levelAvailability;

 public void OnFinishLevel(int level)
 {
 if (level >= levelAvailability.Count)
 {
 gameManager.LoadScene("Start");
 return;
 }
 levelAvailability[level].Value = true;
 gameManager.LoadScene($"Level{level + 1}");
 }

 public void GoToLevel(int level)
 {
 gameManager.LoadScene($"Level{level}");
 }
}

Figure 73: Level Manager ScriptableObject, with methods to control level flow.
Source: Own elaboration.

The Level Manager is directly referenced from UnityEvents in the level selection

buttons and the triggers that detect when a player reaches the end of a level. Since

ScriptableObjects are scene-independent, they can be referenced directly from the

prefabs of these elements without the need for significant logic changes or scene-

specific references.

Figure 74: Inspector view of the On Click UnityEvent of a level selection button,
calling the Level Manager to navigate to level 2. Source: Own elaboration.

Cursor Manager

106 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

The Cursor Manager is another example of a ScriptableObject Manager. It

centralizes the management of the cursor state, showing or hiding it as necessary.

The Cursor Manager references the previously created Control Scheme Handler,

allowing it to passively change the cursor's visibility based on the current control

scheme. For instance, the cursor is made visible when the control scheme switches

to one associated with the mouse and hidden when switched to a gamepad control

scheme. Additionally, the cursor state can be forced to hidden independently of the

control scheme when the player is in a level, ensuring that the cursor's visibility is

consistent with the game's requirements.

public class CursorManager : PassiveScriptableObject
{
 [SerializeField] private ValueReference<string> mouseControlSchemeName;
 [SerializeField] private ValueReference<string> currentControlScheme;
 [SerializeField] private bool forceHiddenCursor;

 private void OnEnable()
 {
 OnControlSchemeChange(currentControlScheme.Value);
 currentControlScheme.AddListener(OnControlSchemeChange);
 }

 private void OnDisable()
 {
 currentControlScheme.RemoveListener(OnControlSchemeChange);
 forceHiddenCursor = false;
 }

 public void OnControlSchemeChange(string schemeName)
 {
 if (forceHiddenCursor) return;
 if (mouseControlSchemeName.Value.Equals(schemeName)) ShowCursor();
 else HideCursor();
 }

 // Rest of methods
}

Figure 75: CursorManager ScritpableObject, managing cursor state depending on
changes in the value of the current control scheme. Source: Own elaboration.

It is important to note that the Game Manager and Level Manager are not marked

as Passive ScriptableObjects because they do not contain any functionality that

requires them to be constantly loaded into memory. This contrasts with the Cursor

Manager, which must remain passively loaded to handle real-time cursor state

changes. This distinction ensures that only necessary objects remain persistently in

memory, optimizing resource usage.

Development 107

5.3.10 Game State Persistency

Some aspects of the game need to be persisted across play sessions to ensure

continuity and a seamless player experience. These aspects include:

 Levels: The unlocked levels must remain unlocked.

 Collectibles: The collected coins must remain collected.

 Settings: The volume parameters configured by the player in the settings

window must remain as last set.

This persistency can be ensured by leveraging Variable Repositories. First, it is

important to identify which Scriptable Variables are part of the game state that needs

to be persisted. In this case, these include the Bool Variables created to indicate the

coins being collected, the Bool Variables indicating the availability of the levels, and

the Float Variables indicating the value of the volume. These variables need to be

marked as persistent by enabling the "persist" toggle option they integrate.

Figure 76: Inspector view of Is Level 2 Available, one of the varaibles marked to be
persisted. Source: Own elaboration.

Once the variables are marked as persistent, the next step is to create a Variable

Repository. By pressing the "Add Persistent Variables" button displayed in the

Inspector window, all variables marked as persistent are automatically added to the

repository's list. The final step is to enable the options in the Variable Repository to

automatically load the variables when the repository is loaded into memory and save

them when it is unloaded, eliminating the need for manual loading and saving.

108 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 77: Inspector view of the Variable Repository, containing all the Scriptable
Variables to be persisted. Source: Own elaboration.

Since the Variable Repository is a Passive ScriptableObject, it will be loaded at the

beginning of the game, ensuring the variables are properly synchronized with their

persistent state from the outset. Because all components and systems created in

the development of this game are reactive to the values of these variables, the game

will "configure itself" to the state of the last play session. This design removes the

need for game managers that set up the game state at the beginning of a play

session.

5.3.11 Managing Passive ScriptableObjects

To ensure all the created Passive ScriptableObjects are properly loaded into

memory at runtime, it is crucial to verify that their toggle option, indicating they

should be passively referenced, is set to true. This applies to both the Passive

ScriptableObjects provided by the framework and those customized by extending

the framework. The relevant ScriptableObjects include:

Development 109

 Input Action Handlers.

 Input Icon Providers.

 Control Scheme Handler.

 Cursor Manager.

 Variable Repository.

 Volume Controllers.

 Variable Repository

By default, Passive ScriptableObjects have this toggle option set to true when

created. However, there might be instances where they have been manually set to

false to prevent them from being loaded, typically as the game requirements evolve.

Ensuring the toggle remains set to true is essential for maintaining their passive

loading behaviour.

The final step in managing Passive ScriptableObjects is to click on the “Add

References to Passive ScriptableObjects” option in the SODD Framework’s menu.

This action results in the creation of a GameObject in all scenes included in the final

build of the game, which references all the Passive ScriptableObjects. This ensures

that these objects are loaded into memory as intended. If new Passive

ScriptableObjects need to be created in the future to accommodate new

functionalities, clicking this menu option again will update the references

accordingly.

110 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Figure 78: The generated object referencing all the Passive ScriptableObjects.
Source: Own elaboration

Conclusions 111

6 Conclusions

The journey to develop a SODD Framework for Unity has been both challenging

and rewarding. This project set out to explore and extend the possibilities of using

ScriptableObjects in game architecture, aiming to create a tool that could streamline

and enhance the game development process. This section reflects on the

achievements, key learnings, setbacks, and future directions for the framework, as

well as assess the extent to which the project objectives were met.

6.1 Objectives

 Developing the framework: The primary objective of developing a specialized

framework for Scriptable Object Driven Development has been successfully

achieved. The SODD framework effectively implements and expands upon the

principles of modularity, editability, and debuggability. This achievement has

resulted in a robust tool that enhances productivity and collaboration in Unity's

development environment.

 Documentation: Comprehensive documentation has been created and hosted

for the framework. Detailed documentation is provided directly in the source code

as XML comments, making it accessible for anyone importing and using the

framework in their Unity project. Additionally, the documentation has been

generated and hosted on GitHub Pages, where users can refer to the manual,

API reference, changelog, and license. This extensive documentation ensures

that the framework's features and functionalities are accessible and

understandable to developers, thereby encouraging its adoption.

 Sample Videogame: To evaluate and demonstrate the practical viability of the

framework, a sample video game was developed using SODD as the primary

methodology. This objective was achieved successfully, as the sample game,

Ice Heat, effectively showcased the framework's capabilities and provided a

practical validation of its design and functionality.

 Publication and Accessibility: The objective of publishing the framework has

been achieved through its public hosting on GitHub as an open-source project.

112 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

The repository can be imported into any Unity project via UPM. Moreover, it can

be expanded through open-source collaboration. This availability broadens the

framework's reach to potential users, promotes community engagement, gathers

feedback, and attracts potential collaborators, contributing significantly to the

open-source community.

6.2 Learnings and Achievements

 Improving Game Architecture: One of the significant achievements of the

SODD framework is its successful implementation of a modular approach to

game architecture. By encapsulating game data and behaviours into Scriptable

Objects, the framework reduces dependencies and enhances flexibility. This

modular design allows for individual components to be developed, tested, and

maintained independently, promoting reusability across different projects. The

modularity ensures that changes in one part of the system do not adversely

affect others, leading to a more stable and maintainable codebase.

 Empowering Designers: Another primary goal of the SODD Framework was to

facilitate a more designer-friendly environment. The use of Scriptable Variables

and Events allows game designers to modify game parameters and behaviours

directly through the Unity Inspector without needing to dive into the codebase.

This feature significantly reduces the iteration time during the game design

process, empowering designers to experiment and fine-tune game elements

efficiently. The editability provided by the framework enables rapid prototyping

and adjustments, enhancing the overall development workflow.

 Open-Source Project Management: A key learning of the project was the

creation, hosting, and maintenance of an open-source Unity Package that

follows Unity's standards. This involved structuring the project to meet Unity's

package requirements and ensuring that it could be easily integrated into any

Unity project. Additionally, leveraging the potential of Continuous

Integration/Continuous Deployment (CI/CD) in GitHub was crucial. The CI/CD

pipelines were set up to automate the update, publication, and hosting of the

Conclusions 113

package documentation, ensuring that the latest changes and improvements

were always available to users.

6.3 Challenges and Setbacks

The primary setback of this project has been time constraints. Given its scope, it

was sometimes necessary to omit certain elements to prioritize more critical

requirements.

 Left Out Implementations: Some specific implementations for Scriptable

Variables, Events, and Collections outlined in the planning phase were not

completed. These implementations were classified as "Could Have" and "Won’t

Have" in the MoSCoW prioritization scheme, meaning they were not essential

for the proper functioning of the SODD Framework.

 Development Workflow: The development methodology established in the

planning phase included creating User Stories for each feature, defining clear

requirements such as comprehensive documentation and proper test coverage.

While this methodology was followed for most of the process, time constraints

and the need to finalize certain features before developing the sample video

game led to deviations from this methodology in some instances.

 Manual for the Developed Videogame: Ice Heat served as a successful

example of the practical use of the Framework. However, beyond being a proof

of concept, Ice Heat was intended to serve as a tutorial for users of the

framework, demonstrating how functionalities are implemented. Unfortunately, a

manual explaining the process of creating the video game and navigating the

project was not created due to time constraints.

 Lack of a Deeper Manual for the Framework: While the technical

documentation of the framework, also referred to as the Scripting API Reference

in Unity Packages, was successfully created—fulfilling a key documentation

requirement—the user manual, which serves as a guide to using each feature of

the framework, is somewhat shallow. It requires more comprehensive coverage

to fully support users.

114 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

 Architecture decisions in the Videogame: Although following the principles of

SODD ensures good practices and results in a sound game architecture, time

constraints led to design decisions that, in hindsight, could be improved for a

more accurate application of these principles. This suggests that the SODD

Framework alone does not guarantee proper practices; users need knowledge

on how to apply SODD principles effectively for successful use of the framework.

6.4 Future Work

 Framework Enhancements: The SODD Framework provides a robust

foundation, but there are numerous opportunities for further enhancements.

Future work should focus on expanding the framework's capabilities by

incorporating the implementations that have been omitted in this project, as well

as providing additional Scriptable Object types and enhancing existing ones to

support more complex use cases and data types. Moreover, introducing an

editor window to consolidate all framework features into a central menu, rather

than relying on Unity’s toolbar, would significantly improve user experience and

efficiency.

 Platform Expansion and Community Engagement: Increasing the

framework's visibility and adoption through additional platforms, such as the

Unity Asset Store, represents another significant area of improvement. This

would not only enhance accessibility but also foster community engagement.

Collecting feedback from users and encouraging collaborative development will

be invaluable for identifying areas of improvement, ensuring the framework

evolves to meet the needs of a diverse and growing user base.

 Documentation: Expanding on the existing documentation and providing more

tutorials will help new users quickly understand and adopt the framework. By

providing clear and detailed guides, the framework's accessibility and usability

can be significantly increased, leading to wider adoption within the Unity

community.

Conclusions 115

6.5 Final Conclusion

The positive outcomes observed in this project highlight the potential for widespread

adoption of Scriptable Object Driven Development within the Unity community. By

achieving the established objectives and addressing common challenges in Unity

development, the SODD Framework offers a potential new standard for efficient and

effective game development practices.

116 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

References 117

7 References

Ahmad, K. S., Ahmad, N., Tahir, H., & Khan, S. (2017). Fuzzy_MoSCoW: A fuzzy

based MoSCoW method for the prioritization of software requirements.

International Conference on Intelligent Computing, Instrumentation and

Control Technologies (ICICICT), (pp. 433-437).

Ali, J. M. (2023). DevOps and continuous integration/continuous deployment

(CI/CD) automation. Advances in Engineering Innovation.

Baglie, L. S., Neto, M. P., Guimarães, M., & Brega, J. (2017). Distributed, Immersive

and Multi-platform Molecular Visualization for Chemistry Learning.

Communication Systems and Applications.

Bäumer, D., Gryczan, G., Knoll, R., Lilienthal, C., Riehle, D., & Züllighoven, H.

(1997). Framework Development for Large Systems. Communications of the

ACM, 40(10), 52-59.

Casquina, J. C., & Montecchi, L. (2021). A proposal for organizing source code

variability in the git version control system. Proceedings of the 25th ACM

International Systems and Software Product Line Conference, A.

Contreras, N., & Rene, A. (2017). Master Thesis in Mechatronics from the FH

Aachen. "Use and adoption of software design patterns for PLC based

systems".

Diebold, P., Theobald, S., Wahl, J., & Rausch, Y. (2018). An Agile transition starting

with user stories, DoD & DoR. Proceedings of the 2018 International

Conference on Software and System Process.

Fine, R. (2016). Overthrowing the MonoBehaviour Tyranny in a Glorious Scriptable

Object Revolution. Retrieved from

https://www.youtube.com/watch?v=6vmRwLYWNRo&t=1725s

Freeman, A. (2015). The Observer Pattern.

Freeman, A. (2015). The Singleton Pattern.

118 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns:

Elements of Reusable Object-Oriented Software.

Gatteschi, V., Lamberti, F., Montuschi, P., & Sanna, A. (2016). Semantics-Based

Intelligent Human-Computer Interaction. IEEE Intelligent Systems, 31(4), 11-

21.

Hipple, R. (2017). Game Architecture with Scriptable Objects. Retrieved from

https://www.youtube.com/watch?v=raQ3iHhE_Kk

Hu, X., Shen, Z., Chen, Z., Ran, X., Xiong, X., & Wu, Y. (2023). Research on the

Technology of the Multi-operating System Co-development Based on the

Unity Platform. IEEE 3rd International Conference on Electronic Technology,

Communication and Information (ICETCI), 468-472.

Jackson, S. K. (2015). Unity 3D UI Essentials.

Khosravi, K., & Guéhéneuc, Y.-G. (2004). A Quality Model for Design Patterns.

Kumar, B., Tiwari, U. K., & Dobhal, D. C. (2022). User Story Splitting in Agile

Software Development using Machine Learning Approach. Seventh

International Conference on Parallel, Distributed and Grid Computing

(PDGC), (pp. 167-171).

Lin, W., Krogh-Jacobsen, T., Andreasen, P., & Bilas, S. (2022). Level Up Your Code

With Game Programming Patterns.

Lukosek, G. (2016). Learning C# by developing games with Unity 5.x.

Mechtley, A., & Trowbridge, R. M. (2011). Maya Python for Games and Film: A

Complete Reference for Maya Python and the Maya Python API.

Naveen, B., Grandhi, J. K., Lasya, K., Reddy, E. M., Srinivasu, N., & Bulla, S. (2023).

Efficient Automation of Web Application Development and Deployment Using

Jenkins: A Comprehensive CI/CD Pipeline for Enhanced Productivity and

Quality. International Conference on Self Sustainable Artificial Intelligence

Systems (ICSSAS), (pp. 751-756).

References 119

Nystrom, R. (2014). Game Programming Patterns. Genever Benning.

Pop, D. (2008). Introduction to Zend Framework. Journal of Information Systems

and Operations Management(2), 507-512.

Power, K. (2014). Definition of Ready: An Experience Report from Teams at Cisco.

International Conference on Agile Software Development.

Qu, J., Wei, Y., & Song, Y. (2014). Design patterns applied for networked first person

shooting game programming. 15th IEEE/ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), (pp. 1-6).

Rautakopra, A. (2018). Game Design Patterns: Utilizing Design Patterns in Game

Programming.

Singh, S., & Kaur, A. (2022). Game Development using Unity Game Engine. 2022

3rd International Conference on Computing, Analytics and Networks (ICAN),

(pp. 1-6).

Unity Technologies. (2022). Unity User Manual 2022.3 (LTS). Retrieved from

https://docs.unity3d.com/Manual/index.html

Unity Technologies. (2024). Input System 1.8.2. Retrieved from

https://docs.unity3d.com/Packages/com.unity.inputsystem@1.8/manual/ind

ex.html

Unity. (n.d.). Unity Real-Time Development Platform | 3D, 2D, VR & AR Engine.

Retrieved from https://unity.com

Wu, W., Khomh, F., Adams, B., Guéhéneuc, Y., & Antoniol, G. (2015). An

exploratory study of api changes and usages based on apache and eclipse

ecosystems. Empirical Software Engineering(21), 2366-2412.

120 Creating a Unity Framework for Scriptable Object Driven Development (SODD)

Annex 121

8 Annex

8.1 Source code

SODD Framework Source Code:

(Root Folder)/Source/sodd-unity-framework-3.6.0.zip

Ice Heat Videogame Project:

(Root Folder)/Source/sample-videogame-project.zip

Ice Heat Videogame Build:

(Root Folder)/Source/sample-videogame-build.zip

Project’s GitHub Repository:

https://github.com/aruizrab/sodd-unity-framework

8.2 Documentation

Note: To install the framework, it is necessary to follow the Manual Installation in

the Installation section of the framework’s manual, while using the annexed source

code of the framework instead of the latest release download.

SODD Framework Manual:

(Root Folder)/Documentation/SODDFramework_Manual.pdf

SODD Framework API Reference:

(Root Folder)/Documentation/SODDFramework_API_Reference.pdf

8.3 Media

Ice Heat Gameplay:

(Root Folder)/Media/IceHeat_Gameplay.mp4

https://github.com/aruizrab/sodd-unity-framework

