
International  Journal  of

Environmental Research

and Public Health

Article

Muscle Fatigue When Riding a Motorcycle: A Case Study

Priscila Torrado 1,2, Michel Marina 1,* , Stéphane Baudry 3 and Martín Ríos 4

����������
�������

Citation: Torrado, P.; Marina, M.;

Baudry, S.; Ríos, M. Muscle Fatigue

When Riding a Motorcycle: A Case

Study. Int. J. Environ. Res. Public

Health 2021, 18, 7738. https://

doi.org/10.3390/ijerph18157738

Academic Editors:

Jorge Pérez-Gómez and Britton

W. Brewer

Received: 18 June 2021

Accepted: 17 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Group in Physical Activity and Health (GRAFiS), Institut Nacional d’Educació Física de
Catalunya (INEFC), Universitat de Barcelona (UB), 08038 Barcelona, Spain; priscilatorradopineda@gmail.com

2 School of Health Sciences, TecnoCampus Mataró, Universitat Pompeu Fabra, 08302 Mataró, Spain
3 Laboratory of Applied Biology and Neurophysiology, Université Libre de Bruxelles, 1070 Bruxelles, Belgium;

stephane.baudry@ulb.be
4 Facultad de Biologia, University of Barcelona, 08028 Barcelona, Spain; mrios@ub.edu
* Correspondence: michel.marina.1964@gmail.com

Abstract: This case study was conducted to assess muscle pattern, as measured by surface elec-
tromyography (sEMG), and its changes during a controlled superbike closed-road track training
session. The sEMG signals were recorded unilaterally from biceps brachii (BB), triceps brachii (TB),
anterior and posterior part of the deltoid (DA and DP respectively), flexor digitorum superficialis
(FS), extensor carpi radialis (CR), extensor digitorum communis (ED) and pectoralis major (PM)
during three rounds of 30 min. sEMG signals selected for analysis came from the beginning of the
braking action to the way-out of the curves of interest. Considering the laps and rounds as a whole
and focusing on the forearm muscles, ED was more systematically (84%) assigned to a state of fatigue
than FS (44%) and CR (39%). On the opposite, the TB and DP muscles showed a predominant state
of force increase (72%). Whereas the BB showed alternatively a state of fatigue or force increase
depending on the side of the curve, when taking into account only the sharpest curves, it showed
a predominant state of force increase. In conclusion, the fact that forearm muscles must endure a
long-lasting maintenance of considerable activity levels explains why they easily got into a state of
fatigue. Moreover, TB and DA are particularly relevant when cornering.

Keywords: electromyography; motorcycles; muscle strength; forearm; hand strength; neurophysiol-
ogy

1. Introduction

Motorcycle road races last from 30 to 45 min, representing about 20 to 25 laps consisting
of 12 to 20 curves. This profile requires thereby 200 brakes and 400 leans per race at
velocities generally greater than 200 km/h [1] that should be managed with accurate
synergistic muscle contractions from different part of the body, despite the development
of muscle fatigue [2]. However, only a few studies have investigated muscle fatigability
via surface electromyography (sEMG) in riders that were performed either in a laboratory
environment [3–5] or outside the track [2]. At present, only two studies have reported an
accurate fatigue assessment yielded during a real piloting setup [6,7]. Nevertheless, both
studies monitored a pilot driving a motorcycle in a motorway or normal road environment,
much less demanding and stressful than a racetrack.

Another limitation in studying muscle fatigability during track motorcycle race is
related to the interpretation of changes in sEMG during force-varying contractions. It is
widely accepted that muscle fatigability represents a progressive decrease in the capacity of
an individual to produce high levels of force or to maintain steady force output, a decrease
that starts from the beginning of the exercise [8–10]. However, such assessments are rather
difficult in an “on-track” experimental set-up.

Another common technique to evaluate muscle fatigability is the surface electromyo-
gram (sEMG), which records the electrical activity associated with muscle contraction.
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During sustained isometric submaximal contractions, fatigue cause an increase in sEMG
amplitude (time domain analysis), and a decrease in the power spectrum (frequency do-
main analysis) [11–13]. sEMG amplitude increases could be explained by a combination
of an enhanced recruitment of fibers with higher action potential [12] and an increased
synchronization of the motor units [14]. On the other hand, power spectrum decreases
could account for an indirect measure of the metabolic status of the muscle cell mem-
brane [15], based on matched behavior with conduction velocity of the action potentials
that propagate along the muscle fiber membrane, and muscle lactic acid, due to a restricted
blood flow [16]. However, these electrical indices have some limitations during force-
varying contractions [17]. Accordingly, Luttmann et al. [18] developed the joint analysis
of sEMG spectrum and amplitude (JASA), which combines the time and frequency do-
mains of the sEMG signal, allowing to define four quadrants [18–21]: (1) force increase
(root mean square (RMS) and mean frequency (MF) increase), (2) fatigue (RMS increase
and MF decrease), (3) recovery (RMS decrease and MF increase), and (4) force decrease
(RMS and MF decrease). This approach allows to determine a reliable pattern of sEMG
during repeated tasks with similar force production and has been successfully used to
assess neuromuscular fatigue in occupational labor [20], such as a surgery [18], wheelchair
maneuvers [19], virtual environments [22], construction [21], or cycling [23].

Very little information is available about the required muscular load during the
different actions that take place during a motorcycle road race. In consequence, we could
say that up to now, physical training programs in this sport have been based on empirical
knowledge and not on scientific evidence. Therefore, the objectives of this study were (1)
to assess the muscle activity changes that occur during riding on a road-race track, and (2)
to find out whether muscle fatigue develops when riding a motorcycle during consecutive
rounds of a training session on a circuit. We hypothesized that the most demanded muscles
should be the flexor superficialis digitorum (FS), as the agonist of the brake-pulling action
against the lever [4,24], accompanied by the extensor digitorum (ED) considered as the
antagonist pair of the FS. Co-contraction of ED and carpi radialis (CR) is supposed to
occur during the braking phase and entry of the curve because of their wrist stabilization
role already observed in power grip tasks [25,26]. Based on the previous hypothesis, we
supposed that at the end of the training sessions, at least some of these muscles should
get into a fatigue state. Knowing the high inertial forces that must be managed by the
motorcycle riders [1,27], we additionally hypothesized that a complex interplay should
exist between the agonist/antagonist pair mainly responsible for the stabilization of the
elbow (biceps brachii versus triceps brachii; BB/TB) as well as for the role of the shoulders,
when transmitting forces from de handlebar to the rest of the body and vice versa. With
respect to the last hypothesis, the occurrence of fatigue should change the leadership
figures and synergies among these muscles.

The relevance of these data should be considered with respect to the difficulty to obtain
reliable sEMG recordings while riders drove at high speeds carrying on all measurement
instruments despite heat, sudation, and movement artifacts. This challenging experiment
opens new area for applied research in motorcycling.

2. Materials and Methods
2.1. Experimental Approach to the Problem

The participant performed the tests riding a Yamaha R1 1000 cc (Yamaha Motor
Company, Iwata, Shizuoka, Japan) prepared for racing in a closed-road track. In order to
link the rider’s activity with the sEMG recording, we installed a video camera on the body
fairing of the motorcycle to record the track-view and identify each curve sectors of the
track (Figure 1A).



Int. J. Environ. Res. Public Health 2021, 18, 7738 3 of 13

Int. J. Environ. Res. Public Health 2021, 18, x  3 of 13 

 

 

 
Figure 1. Section (A) shows the track layout and the most relevant curves. The layout of interest for each curve (beginning, 
apex and way out) is shaded in grey. Section (B) illustrates the registered sEMG signal of one lap and the analyzed sEMG 
sections corresponding to each curve. 

2.2. Participant 
A healthy motorcycle rider, who participated at national competition level, volun-

teered in this study. He was free from known neurological or musculoskeletal disorders, 
such as the forearm chronic exertional compartment syndrome, so widespread among the 
population of motorcycle riders [28,29]. The age, body mass, and height of the participant 
were 48 years, 75 kg, and 177 cm, respectively. The criterion for inclusion in the study was 
related to the experience riding a large motorcycle engine (1000 cc, more than 170 CV) in 
road racing situations, as well as a consolidated knowledge of the racetrack layout. Prior 
to the data acquisition, written consent was obtained after informing the participant about 
the risks and rights of the study. The study was approved by the ethics committee of clin-
ical research of the local sport administration (reference number 15/2018/CEICEGC). 

  

Figure 1. Section (A) shows the track layout and the most relevant curves. The layout of interest for each curve (beginning,
apex and way out) is shaded in grey. Section (B) illustrates the registered sEMG signal of one lap and the analyzed sEMG
sections corresponding to each curve.

2.2. Participant

A healthy motorcycle rider, who participated at national competition level, volun-
teered in this study. He was free from known neurological or musculoskeletal disorders,
such as the forearm chronic exertional compartment syndrome, so widespread among the
population of motorcycle riders [28,29]. The age, body mass, and height of the participant
were 48 years, 75 kg, and 177 cm, respectively. The criterion for inclusion in the study was
related to the experience riding a large motorcycle engine (1000 cc, more than 170 CV) in
road racing situations, as well as a consolidated knowledge of the racetrack layout. Prior to
the data acquisition, written consent was obtained after informing the participant about the
risks and rights of the study. The study was approved by the ethics committee of clinical
research of the local sport administration (reference number 15/2018/CEICEGC).
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2.3. Circuit

The circuit (Parcmotor Castellolí, Catalonia, Spain) had a length of 4140 m with a
layout composed of seven right and four left curves of varying radii (from 100 m to
10 m) (Figure 1A). All curves had cones to signal their beginning, apex, and way out
to better detect the corresponding sEMG signal. Only the sections corresponding to the
most physically demanding curves where considered (Figure 1B). By demanding curves,
we mean those where the velocities preceding the curve were always over 200 km/h
and which required very aggressive braking followed by the greatest leaning angles
of the motorcycle. That is, those sections of the layout that solicit, from riders, high
intensity braking actions combined with technical maneuvers, which overall expose them
to substantial physical stress [1]. The criteria chosen to select these track sections came from
a sum of biomechanical factors that generate the highest inertial forces, only manageable
with a substantial contribution of muscular work [27]. The track was dry and the average
outside temperature during the session was 18 ◦C, with a relative humidity of 68%.

2.4. Surface sEMG Recording

An ME6000 electromyography system (Mega Electronics, Kuopio, Finland) was used
to register the sEMG signals of the biceps brachii (BB), triceps brachii (TB), anterior and
posterior part of the deltoid (DA and DP respectively), flexor digitorum superficialis (FS),
extensor carpi radialis (CR), extensor digitorum communis (ED), and pectoralis major
(PM). Muscles from the right side of the body were chosen as both the braking and gas
modulation gestures are performed with the right hand. After shaving, abrading, and
cleaning the skin with alcohol-soaked paper, surface electrodes (Ambu Blue Sensor, M-00-S,
Ballerup, Denmark), were placed 2 cm apart (from center to center) over the muscles in
accordance with the SENIAM recommendations [30]. Additionally, electrodes were fixed
to the skin with adhesive tape respecting the direction of the muscle fibers. Electrode
locations were marked to ensure the consistency in electrode placement between the two
days (MVC assessment in the laboratory and track session).

sEMG raw signals were recorded at a sampling frequency of 1000 Hz and amplified a
gain of 1000 using an analog differential amplifier and a common mode rejection ratio of
110 dB. A Butterworth bandpass filter of 8–500 Hz (−3dB) was used (RF-Lambda Europe
GmbH, Rüsselsheim, Germany). To compute the sEMG amplitude, we used the quadratic
mean (root mean square—RMS; µV) at an interval of 0.05 s. The resulting 20 RMS values per
second were computed and averaged for the entire duration of each curve (which ranged
from 5 to 8 s). sEMG spectra were calculated after fast Fourier transformation with frame
width at 1024 and a shift method of 30% of the frame width and selecting the “flat-topped”
windowing function. We determined the spectral distribution using the Median Frequency
(MF, Hz). The sEMG analysis was performed off-line using the MegaWin Software 2.4. For
normalization purposes, both amplitude and frequency spectrum values were expressed
as a percentage of sEMG activity recorded during the MVC basal condition.

2.5. Experimental Design and Procedures

Before the “on-track” set-up, the rider performed a specific isometric maximal volun-
tary contraction (MVC) for each muscle. The activity during MVC was used as a reference
for further normalizations of the muscle sEMG recordings on the motorcycle. The classical
method of measuring the sEMG activity when acting as an agonist, prevailed for the
normalization procedure of the eight monitored muscles [31]. All MVCs were performed
with the rider in seated position and with flexed elbow (from 120◦ to 90◦, depending on the
test). The maximal brake-pulling action above a simulated motorcycle setup was used for
the FS [4,24]. ED and CR muscles were assessed using the dorsal flexion of the hand from a
flat surface oriented in prolongation of the forearm in prone position. MVC of the BB and
TR muscles was carried out with the flexed elbow (90◦) positioned next to the body trunk
and the forearm in neutral rotation. Isometric push-up action in prone position with the
shoulder abducted at 45◦ and elbow flexed at 90◦ was used for the PM. DA was assessed
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with the shoulder and elbow flexed at 90◦, with the forearm in neutral rotation during the
upwards pushing action. Finally, for DP the rider horizontally abducted his shoulder at
90◦ during the backwards pulling action.

The track session lasted the whole day. The participant performed a total of seven
rounds of 30 min each, intercalated by resting periods of 30 min each. Three alternated
rounds were used for the sEMG survey (R1, R2, and R3). The other rounds were performed
with the rider free from the sEMG survey. Prior to these three rounds, the pilot did a
warm-up round (“sighting laps”), to verify the proper recording of the sEMG system and
to decide the settings of the motorcycle. For more detailed timetable information, see
Table 1. During each round, the first and last lap (exiting the pit box and flag to pit box,
respectively) were systematically discarded, selecting 10 “clean” laps for sEMG analysis.
As a result, a total of 30 laps were analyzed during the training session.

Table 1. Timetable of the track session. Riders of two levels (fast and slow) shared alternatively the
access to the racetrack. Our rider followed the schedule of the fast (advanced) group (R1–3). Slow
riders began their rounds at all half-past hours.

Rounds Schedule sEMG Survey

1 from 10:00 a.m. to 10:30 a.m. warm-up round (“sighting laps”)
2 from 11:00 a.m. to 11:30 a.m. R1
3 from 12:00 p.m. to 12:30 p.m.
4 from 13:00 p.m. to 13:30 p.m. R2

Racetrack closed for lunch time

5 from 15:00 p.m. to 15:30 p.m.
6 from 16:00 p.m. to 16:30 p.m. R3
7 from 17:00 p.m. to 17:30 p.m.

2.6. Statistical Analysis

For the analysis of the muscle activity in a non-fatigued state, we selected the first
three “clean” laps of the first round (R1). One-way Anova was used to compare muscles
RMS in the overall six curves. In the second phase of analysis, the same approach was
used to compare the RMS signal in the six curves during these three laps. Shapiro–Wilk
test confirmed the normal distribution of the data (p > 0.15).

When analyzing the fatigue effect throughout the training session every round and
for each of the six curves chosen for analysis, sEMG changes (y-axis) were assessed over
the different laps (x-axis). The slopes of both the normalized RMS and MF values were
calculated using linear regressions. The significance of the trend for the linear regressions
was determined statistically using the F-test. According to the JASA (joint analysis of sEMG
spectrum and amplitude) approach, we used the slopes of RMS and MF regression lines,
for all curves and for all laps of each round, to create MF–RMS quadrant diagrams. For
every diagram, changes in sEMG are indicated on the abscissa for RMS and on the ordinate
for MF [18]. According to Luttmann et al. [20] four interpretations are proposed: (1) when
dots were located in the upper right quadrant, a state of force increase was considered, (2)
if dots were placed in the lower right quadrant, muscle fatigue was assumed, whereas (3)
dots in the upper left quadrant indicated recovery and (4) dots observed in the lower left
quadrant suggested a force decrement. The level of significance was set at 0.05.
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3. Results

The visual inspection of the raw sEMG signal recorded lap by lap (Figure 1B) showed
high persistence in all the laps (n = 30) and confirmed a very strong repeatability of the
muscles activation pattern during the whole training session.

3.1. sEMG Amplitude (RMS)

Analysis of muscle activity before the occurrence of fatigue revealed superior levels
of sEMG amplitude in the forearm musculature (ED, FS, and CR) in comparison with the
other muscles (p < 0.001) (Figure 2A). On the contrary, DP and BB were the less solicited
muscles (p < 0.001). Finally, it is noteworthy that the RMS values in TB and DA muscles
were systematically greater than the activity of DP and BB (p ≤ 0.02) (Figure 2A). When
comparing the sums of muscle activity associated with different curves (Figure 2B), it seems
that C1 and C6 were the most demanding, whereas the lower global RMS values were
observed in C2 and C3. Once again, the greatest levels of muscle activity were registered in
the forearm muscles, independently of the curve (left or right side) (Figure 2B).
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Once the sEMG amplitudes in a non-fatigued state were described (Figure 2), it was
justified to investigate how the occurrence of fatigue could change the activity interplay
among these muscles. The averaged percentages of changes in RMS between the first and
the last lap of the three rounds for every curve are shown in Figure 3A. The results of linear
regressions between RMS and the number of laps, for each curve and round, are shown
in Table S1 (Supplementary Materials). The slopes were different from zero (p ≤ 0.05)
for the majority of the right curves, whereas in the left curves, the statistical significance
prevailed from the second round onward. Considering all the curves without exception,
more than 89% of the slopes of the graphs representing RMS values were positive in all
muscles, except in the FS (67% of the total number of slopes). On the other hand, focusing
exclusively on the right curves (C1, C4, and C6), we can observe that all the recordings for
this side are characterized by a positive slope for the BB, TB, DA, DP, ED, and PM muscles.
The same consistent behavior was observed for the muscles TB, DA, DP, ED, and PM in the
left curves (Table S1, Supplementary Materials).



Int. J. Environ. Res. Public Health 2021, 18, 7738 7 of 13
Int. J. Environ. Res. Public Health 2021, 18, x  7 of 13 

 

 

 
Figure 3. Averaged percentage of change in muscle activity between the first and the last lap of the three rounds, for each 
curve. (A): sEMG amplitude (RMS); (B): sEMG frequency(MF). Muscles are: biceps brachii (BB), triceps brachii (TB), ante-
rior and posterior part of the deltoid (DA and DP respectively), flexor digitorum superficialis (FS), extensor carpi radialis 
(CR), extensor digitorum communis (ED), and pectoralis major (PM). 

3.2. sEMG Frequency Spectrum (MF) 
Figure 3B shows the percentage of change in spectral values quantified by the median 

frequency of all muscle groups investigated along the laps and for each curve. When sim-
ple linear regressions were carried out, the data obtained showed a spectral shift to the 
left in more than half of the significant regressions for DA, FS, ED, and PM muscles, 
whereas mainly positive slopes were observed for BB, TB, DP, and CR (Table S2, Supple-
mentary Materials). Focusing on the right curves (C1, C4, and C6), we must highlight the 
strength of the results in the ED muscle, which showed a significant spectral shift to the 
left (p < 0.05) in the majority of occasions, while the frequency spectrum of the TB, DP and 
CR muscles mostly shift significantly to the right. Nevertheless, the forearm muscles (FS, 
CR, and ED) systematically showed a significant MF decrement during the last round 
(R3), with relatively high r2 values (0.61–0.82). Considering the left curves (C2, C3 and C5), 
significant MF increments were observed mainly in C2 and C3 of the second round, 
whereas MF decrements prevailed in the third round (Table S2, Supplementary Materi-
als). 

3.3. JASA Method 
With the Joint Analysis of sEMG Spectrum and Amplitude (JASA) method, all mus-

cles were clearly located in the upper right and lower right quadrants, which are associ-
ated with a state of fatigue and force increase, respectively (Figure 4). This kind of repre-
sentation shows the muscle status grouped by body segments throughout the three 
rounds, in the most demanding curves (C1, C3, and C6). The fatigue state of the ED mus-
cle, indicated by a simultaneous increase of RMS and decrease of MF, can be observed in 
89% of the occasions (Table 2, Figure 4B). The PM and DA muscles also showed a high 
percentage of occurrence in the “fatigue” quadrant (72% and 61%, respectively), particu-
larly in the left curves (Table 2, Figure 4C). The remaining muscle groups also presented 
signs of fatigue, although in lesser percentages (from 28% to 44%). On the other hand, arm 
muscles (BB and TB), DP, and CR revealed a state associated with force increase in most 
of the sEMG recordings (Figure 4A), mainly in the right curves. This behavior was also 
observed in the remaining muscles, above all in the right curves. Signs of recovery were 
found in the CR and FS muscle. The latter showed a great number of braking actions for 
which the muscular force is not constant, as is clearly demonstrated in Table 2. In 

Figure 3. Averaged percentage of change in muscle activity between the first and the last lap of the three rounds, for each
curve. (A): sEMG amplitude (RMS); (B): sEMG frequency(MF). Muscles are: biceps brachii (BB), triceps brachii (TB), anterior
and posterior part of the deltoid (DA and DP respectively), flexor digitorum superficialis (FS), extensor carpi radialis (CR),
extensor digitorum communis (ED), and pectoralis major (PM).

3.2. sEMG Frequency Spectrum (MF)

Figure 3B shows the percentage of change in spectral values quantified by the median
frequency of all muscle groups investigated along the laps and for each curve. When simple
linear regressions were carried out, the data obtained showed a spectral shift to the left
in more than half of the significant regressions for DA, FS, ED, and PM muscles, whereas
mainly positive slopes were observed for BB, TB, DP, and CR (Table S2, Supplementary
Materials). Focusing on the right curves (C1, C4, and C6), we must highlight the strength of
the results in the ED muscle, which showed a significant spectral shift to the left (p < 0.05)
in the majority of occasions, while the frequency spectrum of the TB, DP and CR muscles
mostly shift significantly to the right. Nevertheless, the forearm muscles (FS, CR, and
ED) systematically showed a significant MF decrement during the last round (R3), with
relatively high r2 values (0.61–0.82). Considering the left curves (C2, C3 and C5), significant
MF increments were observed mainly in C2 and C3 of the second round, whereas MF
decrements prevailed in the third round (Table S2, Supplementary Materials).

3.3. JASA Method

With the Joint Analysis of sEMG Spectrum and Amplitude (JASA) method, all muscles
were clearly located in the upper right and lower right quadrants, which are associated
with a state of fatigue and force increase, respectively (Figure 4). This kind of representation
shows the muscle status grouped by body segments throughout the three rounds, in the
most demanding curves (C1, C3, and C6). The fatigue state of the ED muscle, indicated
by a simultaneous increase of RMS and decrease of MF, can be observed in 89% of the
occasions (Table 2, Figure 4B). The PM and DA muscles also showed a high percentage of
occurrence in the “fatigue” quadrant (72% and 61%, respectively), particularly in the left
curves (Table 2, Figure 4C). The remaining muscle groups also presented signs of fatigue,
although in lesser percentages (from 28% to 44%). On the other hand, arm muscles (BB
and TB), DP, and CR revealed a state associated with force increase in most of the sEMG
recordings (Figure 4A), mainly in the right curves. This behavior was also observed in
the remaining muscles, above all in the right curves. Signs of recovery were found in the
CR and FS muscle. The latter showed a great number of braking actions for which the
muscular force is not constant, as is clearly demonstrated in Table 2. In summary, while BB,
TB, DP, and CR presented a force increase in more than half of sEMG readings, a fatigue
state was observed in more than half of the occasions in DA, PM, and in particular ED.
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Figure 4. Application of the joint analysis of the sEMG spectrum (ordinate axis) and amplitude
(abscissa axis) to the most demanding curves (C1, C3, and C6) with results separated per body
segments. (A): Arm Muscles (BB: biceps brachii; TB: triceps brachii); (B): Forearm muscles (FS:
flexor digitorum superficialis; CR: carpi radialis; ED: extensor digitorum communis); (C): Shoulder
girdle muscles (DA: anterior part of the deltoid; DP: posterior part of the deltoid; PM: pectoralis
major). Note: The results of individual linear regressions, for each curve and round, are shown in
Supplementary Materials (Tables S1 and S2).
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4. Discussion

The main objective was to provide, for the first time, sEMG data measured during
track motorcycling to define the muscle activity pattern and its changes with fatigue. The
results indicated a reliable sEMG pattern for all muscles, with some of them exhibiting
signs of fatigue, whereas others showing a progressive increase in the force developed by
these muscles across laps and rounds. The main finding of the present study was that in a
non-fatigued state, ED, FS, and CR had a substantially higher overall activity than the rest
of the analyzed muscles. Additionally, apart from the forearm muscles, TB and DA must
be taken into account when riding a motorcycle in an on-track situation. Because of these
observations, it is not surprising that these muscles got into a state of fatigue at the end of
the track session.

The results confirmed the long-lasting maintenance of an overall considerable activity
of the forearm muscles in different layouts of the racetrack throughout the training session.
This observation partially explains why a great number of motorcycle riders suffer from
the chronic exertional compartment syndrome [28,29].

According to De Luca [16], a stationarity of the signal is needed to ensure that any
electrode movement affects the amplitude of the motor unit action potentials (MUAPs)
and to guarantee stability in the motor unit activation pattern. During motorcycle riding,
it is impossible to maintain the same contraction levels because the rider moves almost
constantly during (1) the braking, (2) side-to-side transitions to lean the motorcycle in the
curves, and (3) accelerations during the way out of these curves. From the methodological
perspective, it is a great advantage that the majority of the movements are performed
repeatedly in the same way to move from one position to another and in the same specific
sectors of the circuit, lap by lap. When cornering, the rider maintains the position to
be as accurate as possible and tries to not make any sudden movements. On that basis,
we analyzed the sEMG signals obtained during a real piloting situation both with single
electrical indices and using the JASA method proposed by Luttmann et al. [20]. For the
JASA method, each action that represents the same activity and/or performed with the
same body posture is codified. Following the same rationale [18], we selected sections
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that involved the same body posture and the same activity. Hence, sEMG signals were
consistent and the muscle contractions corresponding to each sector of the track were easily
detectable (Figure 1B).

The data obtained for the arm and the shoulder girdle muscles showed that almost
all the RMS slopes were significantly and positively associated with the lap number. If
we considered only the sEMG amplitude as a fatigue indicator, our interpretation could
be that all muscles were fatigued during the entire session. However, the results of the
JASA analysis of the overall curves (Table 2) indicated that PM and DA muscles were in
a fatigue state most of the time. Focusing on those curves with small radii and preceded
by higher velocities (C1, C3, and C6), the fact that PM and DA appear in the fatigue
quadrant, especially in the R3, indicates the importance of these muscles for the support
of the postero-anterior inertia generated during intense braking [27] as well as for control
of the initiation of the “shimmy phenomenon” [32]. Therefore, we suggest that cornering
after a straight line where the preceding velocity is higher than 200 km/h implies a very
high involvement of the PM and DA muscles, which leads to fatigue. On the contrary, both
the TB and DP muscles showed larger force increase behavior than BB (Table 2), although
in the hardest curves, the latter showed a predominant state of force increase (Figure 4A).
Thus, it is evident that when cornering, these muscles play an important role, probably in
withstanding the motorcycle weight and/or in the typical counter-steering maneuver used
to modulate the tilt of the motorcycle when getting toward the apex of the curve. Knowing
that C2, C3, and C5 were left-sided curves and that the sEMG monitoring was performed
only in the right upper limb, it is not surprising that the TB (pushing action during the
counter-steering maneuver) was more solicitated in the right-sided curves (C1, C4, and C6)
(Figure 2B).

It is also important to consider the movement chosen to test MVC in baseline condition
for normalization purposes, before interpreting changes of muscle activity during a global
fatiguing task [33]. In the present investigation, it is understandable that the BB, DP, and
TB activity recorded during the basal MVC were much higher than during piloting the
motorcycle. This kind of normalization procedure may facilitate that these three muscles
get toward a state of “force increase” during a high percentage of occasions.

Despite showing state variations, the forearm musculature became fatigued in R3,
regardless of the curve analyzed, although the ED muscle seemed to suffer more physical
loading during riding than the FS and CR. With few exceptions, the ED muscle in particular
was the one which experienced the most fatigue, as demonstrated by the RMS and MF
slopes and JASA analysis. This finding supports the results obtained by Torrado et al. [5]
who assessed fatigue in the ED muscle after an intermittent fatigue protocol designed for
motorcycle riders. These authors suggested, using a motorcycle simulator and protocol
duration longer than 30 min, the presence of peripheral fatigue in the ED muscle and
changes in cortical excitability, apart from the typical maximal voluntary contraction loss.
Nevertheless, this fatigue state was not observed as pronouncedly in the FS and CR muscles,
because they changed their position from one quadrant to another (Table 2 and Figure
4B). Such state alternations occurred in these two muscles especially in R2. It seems that
professional riders are more habituated to coactivating the aforementioned muscles to
improve precision and sensitivity during braking [4,34–36]. This behavior was observed in
R2, normally considered as the best round from the performance point of view. This was
because the rider became accustomed to the track and begins to increase the pace without
yet suffering from the external manifestations of fatigue. In fact, the fastest laps tend
to be obtained from the second round onward during training sessions. The alternation
observed here, precisely in the more technical curves (4 and 5 could thus be explained by
the necessity of maintaining the finetuning and precision of the riding in spite of fatigue [4].
Nevertheless, in R3, the fatigue state was clearly present, in agreement with a previous
study that confirmed that fatigue was not manifested from the very beginning of a 24 h
endurance race [2]. In this study, the normalized MVC was maintained with respect to
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the basal value during the first two relays, but afterwards it started to decline because of
fatigue.

To our knowledge, there has not been a report on such a level of applied analysis in
this sport. This study provides the first scientific and direct assessment of what happens
when a pilot rides a motorcycle. However, the recording of the gas handle path and of the
pressure exerted on the brake lever by a telemetric system of the kind habitually used by
the teams of the MotoGP World Championship could upgrade the present study. Hence,
this study is a first step towards the assessment of the fatigue during a race situation.

The limitations of this study come obviously from the reduced sample size. Future
investigation should address this topic with a greater number of riders and verify if muscle
activity patterns, as well as changes of these patterns with the occurrence fatigue, can be
generalized or not. On the other hand, the limited number of available sEMG channels
(n = 8) did not allow us to monitor the left upper limb at the same time. This limitation could
certainly cause the underestimation of the muscle activity when cornering the left-sided
curves and prevents from comparisons between both limb sides. Another limitation comes
from the fact that we used only one racetrack. It could be interesting to monitor the same
riders in different racetracks and investigate if the sEMG signal is useful to distinguish
different layouts. Finally, it must be mentioned that contrarily to the sEMG amplitude, we
must be cautious when interpreting physiological mechanisms derived from changes in the
sEMG frequency spectrum. This is because they are not directly related with differences in
recruitment and motor unit firing rate of the target muscles [12].

5. Conclusions

This study provides descriptive information about muscle behavior during a motor-
cycle ride on a racetrack. It seems that pushing-like muscles, such as TB and DA, have
sufficient relevance as to be seriously considered during physical conditioning specifically
oriented to motorcycle racing. Among the always highly demanded forearm muscles, ED
was more demanded and fatigued than FS and CR. Whereas PM and DA were fatigued
especially in the last round, TB and DP showed a state of force increase. This state was
particularly predominant in the BB muscle in the sharpest curves. This study is a step for-
ward towards knowing the fatigue behavior of muscles involved when riding a motorcycle
in real racetrack conditions and should help coaches to design specific strength training
programs focused on the upper body musculature.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph18157738/s1, Table S1: Linear regression results of sEMG amplitude values (RMS)
by rounds for each curve. Table S2: Linear regression results of sEMG frequency spectrum (MF) by
rounds for each curve.
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