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ABSTRACT School-aged children spend 31–60% of their time at school performing handwriting, which is
a complex perceptual-motor skill composed of a coordinated combination of fine graphomotor movements.
As up to 30% of them experience graphomotor difficulties (GD), timely diagnosis of these difficulties and
therapeutic intervention are of great importance. At present, an objective, computerized decision support
system for the identification and assessment of GD in school-aged children is still missing. In this study,
we propose three novel advanced handwriting parametrization techniques based on modulation spectra,
fractional order derivatives, and tunable Q-factor wavelet transform to improve the identification of GD
using online handwriting. For this purpose, we analyzed signals acquired from 7 basic graphomotor tasks
performed by 53 children attending 3rd and 4th grade at several primary schools around the Czech Republic.
Combining the newly proposed features with the conventionally used ones, we were able to identify GD
with 84% accuracy. In this study, we showed that using advanced parametrization of basic graphomotor
movements can be potentially used to improve our capabilities of quantifying problemswith the development
of legible, fast-paced handwriting, and help with the early diagnosis of handwriting difficulties frequently
manifested in developmental dysgraphia.

INDEX TERMS Advanced parametrization, computerized analysis, graphomotor difficulties, machine
learning, online handwriting.

I. INTRODUCTION
At present, every school-aged child is expected to master
legible, well-coordinated and fast-paced handwriting, which
is a complex perceptual-motor skill learned by instruction
that quantifies a child’s timely maturation and integration of
psycho-motor, linguistic and mental abilities, and readiness
for education [1]. It is known that it takes approximately
10 years to develop handwriting skills [2] on both quantita-
tive (speed) and qualitative (legibility) level [3], [4]. However,
before a child starts to write, she/he first needs to learn how
to draw [5]. In general, until the age of 6, a child starts to
develop a combination of motor and non-motor skills such
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as motor planning and execution, visual–perceptual abilities,
orthographic coding, kinesthetic feedback, and visual–motor
coordination, which eventually become automated at the age
of 8–9 [6], [7]. These skills are referred to as graphomotor
skills (GS) [8], [9], and form the foundation of drawing and
consequently, handwriting abilities [2] that accompany every
person throughout the life-time.

Even though modern technologies brought new ways of
communication, self-expression, and education, handwrit-
ing is still an important part of a child’s life [9]. In gen-
eral, it has been estimated that children spend 31–60% of
their school-time performing handwriting [10]. Given that
children at school need to write under time constraints,
the acquisition of GS is crucial for a child’s ability to
write legibly, as well as quickly and efficiently. Basically,
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the development of GS affects a child’s academic success
and professional career [11]. It has also been shown that
approximately 10–30% of children experience graphomotor
difficulties (GD) [8], [9] such as motor-memory dysfunc-
tion (problems combining memory input with motor output),
graphomotor production deficits (poor muscle coordination,
unusual pen-grip and less precise graphomotor movements),
motor feedback difficulties (over-activation of certain mus-
cles and joints during handwriting as well as problems track-
ing the location of the pen’s tip), etc. Such an impairment
of the neuro-muscular system can have serious pedagogi-
cal and psychological consequences, and can greatly affect
a child’s every-day life [12] startingwith slow and less-legible
handwriting, lack of motivation to write, lower self-esteem
combined with poor emotional well-being, bad attitude and
behaviour, communication and social interaction problems,
and in some cases going as far as being diagnosed with a seri-
ous neurodevelopmental disorder such as developmental dys-
graphia (DD) [9], [13]–[15]. To provide children with both
preventive as well as corrective therapeutic care, GD should
be identified and treated as soon as possible [16], [17].

To identify and evaluate GD and handwriting
difficulties (HD) in general, occupational therapists and/or
special educational counsellors use specialized question-
naires or tests that aim at quantification of the quality of
the handwritten product in multiple domains using its visual
inspection. Some of the most commonly used questionnaires
(rating scales) are the following: Concise Assessment Scale
for Children’s Handwriting (Brave Handwriting Kinder)
(BHK) [18], Handwriting Proficiency Screening Question-
naire (HPSQ) [19] or Handwriting Proficiency Screening
Questionnaire for Children (HPSQ–C) [20]. Even though
these scales are a well-established way of identification and
rating of GD and HD in school-aged children, its administra-
tion and coding are time-consuming, which limits the use of
this type of evaluation on a regular day-to-day basis. More-
over, it is naturally limited by the perceptual capabilities,
subjective judgement and experience of an examiner [21].
Finally, it is also a subject to inter-rater variability [22]. Due to
the complexity and limitations associated with GD/HD iden-
tification, many children, especially those attending lower
grades of a primary school, may remain undiagnosed or may
be diagnosed later than appropriate.

To overcome the limitations of the perceptual analysis and
search for a more robust view of various hidden complexities
of the handwriting process, new methods based on digitiza-
tion and signal processing techniques have been developed
[23]–[28]. More specifically, instead of a conventional data
acquisition using a pen and paper, digitizing tablets (digitiz-
ers) have been used to record a variety of signals describing
the evolution of handwriting in time. Such a collection of data
about handwriting (i. e. that one associated with timestamps)
is referred to as online handwriting [29]. Using advanced
digital signal processing algorithms a variety of handwriting
parameters (commonly referred to as handwriting features)
quantifying kinematic (velocity, acceleration, jerk) as well as

dynamic (pen pressure, tilt and azimuth) components con-
tributing to the execution of the handwriting process have
been designed [6], [30]–[32]. Such characteristics are very
hard to be perceived and precisely quantified by a human
observer and are almost impossible to be extracted using only
the final handwritten product.

In recent years, several studies focusing on computer-
ized analysis, identification and assessment of HD, mostly
associated with writing in children with developmental dys-
graphia, have been conducted. In 2017, Pagliarini et al. [27]
reported that the governing principles of rhythmic organiza-
tion, namely homothety and isochrony, describe the hand-
writing process in school-aged children from the time where
the very first handwritten products are made, i. e. before
the handwriting is performed automatically. Moreover, they
pointed out the potential of quantitative analysis to indicate
the development of HD at a very early age. In the same
year, Mekyska et al. [32] performed a study in a cohort
of 27 school-aged children in which they introduced a new
intra-writer normalisation method aiming at improving the
discrimination capabilities of a large variety of conventional
and non-conventional handwriting features. They also built
a random forest classifier identifying the presence of DD
with 96% sensitivity and specificity. Next, Rosenblum and
Dror [26] employed a study focusing on automatic identifica-
tion and characterization of DD in a cohort of 99 third-grade
children. Using various kinematic and dynamic features, they
trained a linear support vector machines classifier achieving
90% sensitivity and specificity. In 2018, Asselborn et al. [28]
developed a diagnostic tool for DD evaluated on a cohort of
298 children (56 children with DD) performing the BHK test
on a digitizing tablet coveredwith a sheet of paper. To identify
the presence of DD, they computed 53 handwriting features
and built a random forest classifier with 96% sensitivity
and 99% specificity. In 2019, Mekyska et al. [33] employed
a study that is the closest one to a study proposed in this work.
They aimed at exploring the impact of specific elementary
graphomotor tasks on the accuracy of computerized diagnosis
of GD. For this purpose, they analysed 7 basic graphomotor
elements performed by a cohort of 76 school-aged children.
Using only conventional handwriting features, they trained
an XGBoost [34] classifier and achieved 50% sensitivity
and 90% specificity. In the same year, Zvoncak et al. [35]
used features based on fractional order derivatives to enrich
a set of conventional features and analysed their corre-
lation with HPSQ–C in 55 children (19 third-grade chil-
dren, and 36 fourth-grade children) performing an alphabet
writing task. With this setup, they reported that features
based on fractional order derivatives improved quantification
and robustness of the description of in-air movements. And
finally, in 2020 Asselborn et al. [36] proposed a data driven
strategy for estimating handwriting quality in a battery of
448 school-aged children (390 typically developing children
and 58 children with HD). They utilized principal component
analysis to reduce 53 handwriting features also used in [28]
to three dimensions that are independent of the BHK scores.
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Next, they used the reduced feature space to cluster children
into two groups (typical handwriting, HD), and evaluated how
far a child’s score is from the average score of children of
the same age and gender. With this approach, they reported
four specific handwriting scores for kinematics, pressure, pen
tilt and static features to describe the handwriting profile of
a child in a finer way that enables measuring the quality of
handwriting in multiple domains.

Although there is a body of research dealing with comput-
erized quantitative analysis of HD in school-aged children,
several key points have not been fully investigated yet. First
of all, most of the studies aimed at identifying HD and/or DD.
Studies focusing on quantification and identification of GD
are very sparse. This is an important topic as HD can have
many forms and can vary even among typically developing
children. As mentioned in one of the most recent publi-
cations dealing with computerized analysis of handwriting
in school-aged children proposed by Asselborn et al. [36],
dysgraphia is an umbrella term that describes a variety of
handwriting difficulties. Therefore, GD play a crucial role in
determining the handwriting profile of a child, and should be
investigated as well. Moreover, most of the studies focused
on writing signals such as writing words, sentences, etc.,
only. Finally, conventional handwriting features have been
used to describe HD almost exclusively. To the best of our
knowledge, a comprehensive study aiming at quantifying GD
manifested during performing a battery of simple but impor-
tant graphomotor elements (loops, spirals, etc.) using not only
conventional but also more advanced graphomotor features is
missing. For this purpose, in this study, we propose the use
of seven graphomotor tasks and three novel types of hand-
writing features based on: a) modulation spectra; b) fractional
order derivatives; and c) tunable Q-factor wavelet transform.
We hypothesize that these features can bring more infor-
mation about specific GD accompanying the handwriting
process of children with GD in its very basis. In addition,
we also hypothesize that a combination of conventional and
more advanced parametrization of online handwriting can
improve identification of GD and contribute to a development
of a decision support system that can be used for diagnosis of
HD and eventually DD.

II. MATERIALS AND METHODS
The methodology can be briefly summarized as follows:
a) dataset description (cohort, acquisition protocol, data
acquisition, etc.), b) presentation of the feature extraction
methods (conventional, newly-proposed features), and c) sta-
tistical analysis and machine learning (normality testing and
feature pre-processing, feature selection, correlation analy-
sis, hypothesis testing, and binary classification). Finally,
an overview of the methodology can also be seen in Fig. 1.

A. DATASET
Altogether, we enrolled 53 Czech-speaking children (22 girls
and 31 boys) attending 3rd and 4th grade at several primary
schools in the Czech Republic: 26 healthy children (HC)

FIGURE 1. An overview of the methodology applied in the study.

(2 3rd-grade girls, 12 4th-grade girls, and 12 4th-grade boys)
and 27 children with GD (1 3rd-grade girl, 5 3rd-grade boys,
7 4th-grade girls, and 14 4th-grade boys). Description of
the dataset can be seen in Table 1. During the data acqui-
sition, all of the children were asked to perform a specifi-
cally designed drawing protocol consisting of 7 elementary
graphomotor tasks (TSK) (for more information, see Fig. 2):
TSK1 –Archimedean spiral (approximately 15 cm in height);
TSK2 – half-sized version of TSK1; TSK3 – connected
loops; TSK4 –flipped version of TSK3; TSK5 – sawtooth;
TSK6 – rainbow; TSK7 – combination of TSK3 and TSK4.
Each of the tasks was first shown to a child and then she/he
replicated it on a blank sheet of paper with a comfort-
able speed. The protocol was designed in cooperation with
psychologists and special educational counsellors so that
it reflects all coordinated elementary movements that are
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FIGURE 2. Drawing acquisition protocol with the selected graphomotor tasks.

TABLE 1. Description of the dataset.

needed to successfullywrite cursive letters (i. e. cursive letters
are constructed of these basic graphomotor elements, there-
fore, mastering these elements is a prerequisite for mastering
legible handwriting). Examples of the final handwritten prod-
uct for all graphomotor tasks performed by healthy children
and children with GD can be seen in Fig. 3.

The protocol was printed on an A4 paper that was laid
down and fixed to a digitising tablet. To acquire the hand-
writing data, we usedWacom Intuos Pro L (PHT-80) with the
sampling frequency of 150Hz, and the Wacom Inking pen.
This set-up enabled us to take advantage of two facts: a) it
provided the children as well as an examiner with immediate
visual feedback andmade it possible to simulate the feeling of
using a conventional inking pen; and b) it allowed for record-
ing of a variety of signals describing the drawing process:
x and y position (x[n] and y[n]); timestamp (t[n]); a binary
variable (b[n]; 0 – in-air movement, i. e. movement of pen tip
up to 1.5 cm above the tablet’s surface, and 1 – on-surface
movement, i. e. movement of pen tip on the paper), pressure
exert on the tablet’s surface during drawing/writing (p[n]);
pen tilt (a[n]); and azimuth (az[n]). For more information,
we refer to our previous works [32], [37].

Moreover, to assess legibility and performance time dur-
ing handwriting as well as physical and emotional well-
being, the children were asked to evaluate themselves using
HPSQ–C (rating scale) [20], which is composed of 10 ques-
tions scored on a 5-point Likert scale (0 – never, i. e. no GD,
4 – always, i. e severe GD; total score, i. e. sum over all ques-
tions: 0 –min. value, 40 –max. value; legibility – items 1, 2,

and 10, performance time – items 3, 4 and 9, and physical and
emotional well-being – items 5–8). Using HPSQ–C brings
two important advantages: a) the scale is language indepen-
dent and therefore well-comparable across studies employed
on cohorts coming from different language groups; b) it has
already been validated in a couple of previous studies such as
[8], [32], [38], [39]. The overall HPSQ–C scores, as well as
the final handwritten product, were both examined by experi-
enced psychologists and special educational counsellors. The
decision about a child’s assignment into HC or GD group
was performed on a PC after the examination of a child’s
handwritten product, where an expert (remedial teacher) had
no information about her/his sociodemographic information
(e. g. sex, class, HPSQ–C, etc.). The description of HC/GD
groups mentioned at the beginning of Section II presents the
numbers after the final examination and assignment.

Parents of all children participating in this study signed an
informed consent form approved by the Ethical Committee
of the Masaryk University. Throughout the entire duration
of this study, we strictly followed the Ethical Principles of
Psychologists and Code of Conduct released by the
American Psychological Association (https://www.apa.org/
ethics/code/).

B. FEATURE EXTRACTION
To quantify GD, we extracted the following convention-
ally used graphomotor features (CONV) [25], [30], [40]:
a) spatial features –width (WIDTH), height (HEIGHT), and
length (LEN) of the signals (also referred to as writing). Even
though the in-air movements can be used to capture a certain
aspect of GD [25], [40], all graphomotor tasks proposed in
this work should be performed using a single stroke. Since
the number of multi-stroke signals analyzed in this study
was only marginal, we did not distinguish between signals
and strokes and used the stroke notation, i. e. stroke width
(SWIDTH), height (SHEIGHT), and length (SLEN), as it is
used in general; b) kinematic features (horizontal and ver-
tical projection) – velocity (VEL), acceleration (ACC), and
jerk (JERK); and c) dynamic features – pressure (PRESS),
tilt (TILT), and azimuth (AZIM). These features were used
as a baseline feature set. To build on top of these conven-
tional features and to enhance their capability of describing
GD in a more robust and complex way, we present three
new feature-types aiming at improving the quantification
and description of GD in school-aged children, namely:
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FIGURE 3. Example of the final handwritten product for all graphomotor tasks performed by randomly selected healthy children (blue)
and children with GD (red) (units are in millimeters).

a) features based on modulation spectra (MS); b) features
based on fractional order derivatives (FD); and c) features
based on tunable Q-factor wavelet transform (TQWT). All
vector-valued features were transformed to scalar values
using mean and coefficient of variation (cv) estimates (some
of the novel features used additional statistical functions that
are described along with the features themselves).

An important fact to point out is that these features were
designed not only to improve the robustness of the conven-
tional features but also to maintain as much interpretability as

possible. This is crucial especially for their real use in clinical
practice because the complexity and great discrimination
power without understanding the meaning of the features are
not likely to bring trust and convenience. If psychologists and
special educational counsellors are able to link the features
with the specific physiological phenomena, the computerized
quantitative analysis of GD can be finally deployed.

To present the features in a compact and easy to read
way, we used the following naming convention: TSK INF:
DIR-FN (HL), where TSK denotes the specific graphomotor
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task, INF represent information about the movement
(ON– on-surface, AIR – in-air), PRESS – pressure,
TILT – tilt, and AZIM– azimuth), DIR stands for direc-
tion (H – horizontal and V – vertical), FN shows the feature
name, and HL holds an applied statistic (if any). Moreover,
each specific novel feature-type also sets FN accordingly
(described in the section devoted to the proposed features).
As all features presented in this work are computed from
on-surface movements, the on-surface/in-air information is
considered redundant and is not shown in the feature names.

1) MODULATION SPECTRA FEATURES
The first type of the novel features proposed in this work is
based on modulation spectra as a non-parametric method for
representing modulations in an analyzed biomedical signal.
MS has already been used for parametrization of dysarthric
speech in patients with Parkinson’s disease (PD) [41]. These
features however aimed at describing instability of vocal
folds vibrations. The features proposed in this work aim at
quantifying the ratio between the low and high-frequency
movements present in a given handwriting signal of children
attending a primary school.

To compute the modulation spectra features, Short-Time
Fourier Transform (STFT) of the input handwriting signal
s[n] of length N is computed as

S[k,m] =
N−1∑
n=0

s[n]w[n− mL]e−jk
2π
N n, (1)

k = 0, 1, . . . ,N − 1,

m = 0, 1, . . . ,M − 1,

where M denotes the number of segments obtained using
a segmentation window w[n] composed of L samples. In the
frame of this work, we usedHamming segmentationwindows
with L = 75 samples (fs = 150Hz, windows of 0.5 s with the
overlap of 50%).

Next, power spectrum |S[k,m]|2 of each segment is com-
puted and filtered by a filer-bank P consisted of Pn filters. For
this purpose, we used a filter bank of 50 linearly distributed
triangular filters. After the filtration, the matrix X [p,m] con-
tains Pn sub-bands p = 1, 2, . . . ,Pn. Subsequently, each
sub-band is normalized [42] as follows

X̂ [p,m] = ln (X [p,m])− ln (X [p,m]), (2)

where ∗ refers to the averaging operator applied over m.
To obtain a modulation spectra matrix, Discrete Fourier

Transform (DFT) is applied on X̂ [p,m].

9[p, l] =
M−1∑
m=0

X̂ [p,m]e−jl
2π
M m, (3)

l = 0, 1, . . . ,M − 1,

where p and l denote the handwriting and modulation fre-
quency, respectively. Finally, 9[p, l] is normalized by the
mean of each sub-band.

After obtaining the modulation spectra matrix, a vector
of handwriting cut-off frequencies fc = 1, 2, . . . ,C [Hz] is
defined. The values of fc are subsequently converted to the
filter indices c using their center frequencies. In this work,
we used fc ∈ Fc, where Fc = 1, 2, . . . , 10, 15, 20, 25Hz.
Next, for each value of fc, low (El) and high frequency
(Eh) summation components of 9[p, l] are computed as

El(fc)[l] =
c∑

p=0

9[p, l],

Eh(fc)[l] =
Pn∑
p=c

9[p, l], (4)

l = 0, 1, . . . ,M − 1,

fc = Fc. (5)

Finally,El(fc) andEh(fc) are used to compute the final energy
ratio Rfc between the low and high frequency movements in
the analyzed handwriting signal. It is defined as

Rfc =

M−1∑
l=0

El[l]2

M−1∑
l=0

Eh[l]2
. (6)

We used the following naming convention for the MS fea-
tures: FRfc, where F represents the name of the handwriting
feature, R stands for ratio, and fc holds the value of the
specific handwriting cut-off frequency used to compute the
energy ratio.

2) FRACTIONAL ORDER DERIVATIVE FEATURES
The second type of the novel features is based on the theory
of fractional order derivatives. Handwriting features based
on FD have already been explored in our previous studies
focusing on the quantitative analysis of parkinsonian dys-
graphia [43]–[46], where they brought a promising improve-
ment in the power of the FD-based features to objectively
discriminate between healthy and dysgraphic handwriting
using machine learning. In this work, we aim at exploring the
possibilities of utilizing FD to describe GD in school-aged
children.

The most common approaches to compute FD are
Riemann–Liouville, Caputo, and Grünwald–Letnikov formu-
lations [47]–[49]. Parameterization of online handwriting
using FD is performed by substituting the conventional differ-
ential derivative during the calculation of the basic kinematic
features (velocity, acceleration, and jerk). The advantage of
FDs lies in their wide range of settings (order α, kernel func-
tion, etc.). In this study, we followed the Grünwald–Letnikov
approximation [48], [50] and used the implementation of FD
by Jonathan Hadida. To decrease the computational require-
ments, we used a segmentation-based computation.

A direct definition of the Dαy(t) is based on the finite
differences of an equidistant grid in [0, τ ], assuming that the
function y(τ ) satisfies certain smoothness conditions in every
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finite interval (0, t), t ≤ T . Choosing the grid [48]

0 = τ0 < τ1 < . . . < τn+1 = t = (n+ 1)h (7)

with

τk+1 − τk = h (8)

and using the notation of finite differences

1
hα
1αh y(t) =

1
hα

(
y(τn+1)−

n+1∑
v=1

cαv y(τn+1−v)

)
, (9)

where

cαv = (−1)v−1(αv ). (10)

The Grünwald–Letnikov definition from 1867 is defined
as

Dαy(t) = lim
h→0

1
hα
1αh y(t), (11)

where Dαy(t) denotes a derivative with order α of a func-
tion y(t), and h represents a sampling lattice. Following our
previous works focused on optimization of α [43], [46],
we used the ranges: from 0.1 to 0.4, and from 0.65 to 0.9,
with iteration step of 0.05.

The naming convention for FD-based features can be
described as: Fα, where F represents the name of the hand-
writing feature and α stands for the order of FD.

3) TUNABLE Q-FACTOR WAVELET TRANSFORM FEATURES
The last type of the novel features is based on tunable
Q-factor wavelet transform [51]–[53]. Recently, we have
shown that HD manifest themselves in higher energies of
the residual component of the decomposed signal computed
by TQWT [39]. Following our previous research, we aim
at investigating the potential of TQWT to describe limited
motor skills, poor dexterity and muscle tone or unspecified
motor clumsiness in school-aged children suffering fromGD.

TQWT is a non-linear discrete-time resonance-based
signal decomposition technique that separates an input
signal into high-resonance (sustained rhythmic oscillations),
low-resonance (non-rhythmic and transient behaviour) and
residual components (stochastic nature of the decomposed
signal) [51]. It is parameterized by a tunable Q-factor and an
oversampling rate (redundancy). In this study, we utilized the
implementation of TQWT based on morphological compo-
nent analysis (MCA) [54] and split augmented Lagrangian
shrinkage algorithm (SALSA) [55] described in [52].

To decompose an input signal into high and low reso-
nance components, an iterative J -level decomposition of its
low-pass channel by a two-channel filter-bank composed
of low- and high-pass filters is used [52]. The frequency
responses of the low-pass Hl(ω) and the high-pass Hh(ω)
filters are defined as

Hl(ω) = θ
ω + (β − 1)π
α + β − 1

, (12)

Hh(ω) = θ
απ − ω

α + β − 1
, (13)

for (1 − β)π < ω < απ , where α and β are the low-
and high-pass scaling parameters, and θ is the Daubechies
frequency response [52] given as

θ (ω) = 0.5(1+ cosω)
√
2− cosω, (14)

for | ω |≤ α. More details can be found in [51], [52].
To describe the proposed features, we define the clean

graphomotor signal xc[n] as

xc[n] = x[n]− xr [n], (15)

where x[n] is a handwriting signal, and xr [n] is a residual
signal given as xr [n] = x[n]− xh[n]− xl[n] (xh[n] and xl[n]
are the high- and low-resonance components).

With xc[n] and xr [n] being defined, the signal-to-noise
ratio is computed as

SNR = 10 log10

(
E(xc[n])
E(xr [n])

)
[dB], (16)

where E denotes energy computed as

E(s[n]) =
N−1∑
n=0

s[n]2, (17)

for s being a substitution for xc[n] and xr [n].
Next, absolute value of the first order derivative of E(xr [n])

is computed as Ed (xr [n]) = |E ′(xr [n])|. To quantify the
variability of Ed (xr [n]), a slope of its cumulative sum is
computed as

E1 = 1C(Ed ), (18)

where C(Ed )[n] for n = 0, 1, . . . ,N − 1 refers to the
cumulative sum applied on Ed , and 1 denotes the slope of
a function. Finally, to compute the number of significant
changes in Ed (xr [n]), the number of its peaks Ep above the
median value is computed.

Naming convention for TQWT-based features can be
described as: FN, where F represents the name of the hand-
writing feature and N stands for the specific TQWT feature:
signal-to-noise ratio (SNR), E1 as RES (csum), and Ep as
RES (npeaks).

C. STATISTICAL ANALYSIS
At first, the features with any missing values were discarded
from the analysis. Consequently, normality of the features
was tested using Shapiro-Wilk test [56]. All non-normally
distributed features were adjusted using Box-Cox [57]
transformation. After the normalization, the features were
re-inspected. As not all of the features were fully-normalized,
an entire feature set was considered as being non-normally
distributed. As a result, only non-parametric statistical meth-
ods were employed during the subsequent statistical analysis.
Next, to control for the effect of confounding factors (also
known as covariates), we computed the Spearman’s corre-
lation between the values of the features and the following
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characteristics: age, gender, grade (these characteristics were
chosen after the consultation with psychologists and special
educational counsellors). With this approach, age and grade
were identified as having a statistically significant effect on
the feature values. The effect of children’s gender on the fea-
tures was onlymarginal. Therefore, during the statistical anal-
ysis, we controlled for the effect of age and grade only. After
the feature-transformation, we reduced the size of the fea-
ture set using a feature pre-selection process independently
for each analyzed feature-type. More specifically, we used
a filter method named minimum RedundancyMaximumRel-
evance (mRMR) to select a relevant sub-set of the features
with minimum redundancy and cross-correlation among the
features. After the feature pre-selection, we obtained 15 fea-
tures per feature-type. Having the same number of the fea-
tures for each features-type is important especially for the
classification analysis, where each classifier is built starting
with the same feature-space complexity.

Next, to compare the distribution of the graphomotor
features for healthy children and children with GD, we used
Mann-Whitney U-test with the significance level of 0.05.
Moreover, to assess the strength of a relationship between
the features and the children’s clinical status (HC/GD),
we computed Spearman’s correlation coefficient with the sig-
nificance level of 0.05. To control for the issue of mul-
tiple comparisons, p-values were adjusted using the False
Discovery Rate (FDR) method.

Subsequently, to identify the presence of GD, we built
binary classificationmodels using an ensemble learning algo-
rithm named Random Forests (RF) [58]. This particular algo-
rithm was chosen due to its robustness to outliers, ability
to find complex interactions among features as well as the
possibility of ranking their importance. Using a randomized
search strategy, we selected the following model settings:
number of estimators (500), maximum tree depth (10), mini-
mum number of samples required for splitting (2), minimum
number of samples at a leaf node (1). Additionally, to train
the models using only a parsimonious, information-rich sub-
set of the features, to considerably decrease the risk of
overfitting, and to reduce the computational performance
requirements, we employed a feature selection process using
a wrapper method named Sequential Floating Forward Selec-
tion (SFFS). As shown previously, reduction of the fea-
ture space complexity can significantly improve the model’s
prediction power [59].

i To quantify the classification performance of the trained
models as well as to control the addition and removal of
the features during the feature selection, we used Matthew’s
correlation coefficient (MCC) [60]. This particular metric
was chosen due to its ability to summarize the confusion
matrix with the focus on obtaining a balance between the
model’s sensitivity and specificity [61]. The training and test-
ing features were standardized before classification on a per-
feature basis to have 0mean and a standard deviation of 1. The
trained models were evaluated conducting a stratified 5-fold
cross-validation (we chose the 5-fold cross-validation scheme

as a reasonable compromise between the number of sam-
ples in the training and validation folds) with 20 repetitions,
and the classification test performance was determined using
the following classification metrics: MCC, accuracy (ACC),
sensitivity (SEN), and specificity (SPE).

Finally, to evaluate the statistical significance of the
prediction performance obtained by the trained classification
models, a non-parametric statistical method named permu-
tation test was employed (exact p-values were computed to
mitigate the type I error rate and the multiple testing issues)
[62], [63]. In this work, we used 1 000 permutations and the
significance level of 0.01 (to estimate the performance of the
models on the permuted data, we used the same classification
setup as in the training phase [64]).

III. RESULTS
At first, the cross-correlation matrices (using Pearson’s cor-
relation) of the 15 features per feature-type selected using
feature pre-selection performed by the mRMR algorithm are
visualized in Fig. 4. As can be seen, there are some features
that can be considered redundant, i. e. having a strong corre-
lation with one/more features, however, as we did not want
to reduce the feature-space complexity too much (the redun-
dancy is not the same in every feature-type, so by reducing the
feature space complexity any further, some relevant features
could be removed as well. This would most likely result in
having sub-optimal feature space for some of the feature-
types.), we decided to use all of the 15 features, and analyze
them accordingly (having the possibility of cross-correlated
features appearing in the results of the statistical analysis
together in mind).

Results of the statistical analysis can be seen in Table 2.
The table shows the top 5 features for each of the
feature-types according to the p-value computed by the
Mann-Whitney U-test (if some of the cross-correlated fea-
tures appeared together, we selected only one of them and
replace the other with the feature/s bellow the top 5). Regard-
ing the p-values of the Mann-Whitney U-test, the following
number of features can be considered as coming from a distri-
bution that is significantly different for the two subject groups
(threshold of 0.05): a) CONV features – 5/5 (prior adjust-
ment), 1/5 (after adjustment); b) MS features – 5/5 (prior
adjustment), 4/5 (after adjustment); c) FD features – 5/5
(prior adjustment), 1/5 (after adjustment); and d) TQWT fea-
tures – 3/5 (prior adjustment), 1/5 (after adjustment). With
respect to the Spearman’s correlation, the following features
were found to have the strongest correlation with the presence
of GD (where ∗∗ denotes p-value < 0.01, and ∗ denotes
p-value< 0.05): a) CONV features – TSK1TILT (mean) ρ =
−0.42∗∗; b) MS features – TSK2 V-JERKR25 ρ = 0.41∗∗; c)
FD features – TSK1 TILTVEL0.3 (mean) ρ = −0.41∗∗; and
d) TQWT features – TSK6 V-VELSNR ρ = −0.39∗∗. All of
these features were found to have a statistically significant
relationship with the presence of GD (both prior and after
p-value adjustment). For better visualization, violin plots
showing the distribution estimates of the best-discriminating
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FIGURE 4. Cross-correlation matrices of the feature sets (Pearson’s correlation coefficient (r); 15 features per feature-type) after
the pre-selection. Color notation: linear scale in the range of < −1, 1 >, where the maximum positive correlation is denoted by
the red color, and the maximum negative correlation is denoted by the blue color. More information about the features can be
seen in Section II-B.

features of every feature-type for both healthy children and
children with GD are presented in Fig. 5.

And finally, results of the classification analysis can be
seen in Table 3. Regarding the individual feature-types,
the following results were achieved (where ∗∗ denotes
p-value < 0.01, and ∗ denotes p-value < 0.05): a) CONV
features (7 features selected) –ACC = 0.74∗∗; b) MS fea-
tures (8 features selected) –ACC = 0.73∗∗; c) FD features
(3 features selected) –ACC = 0.76∗∗; and d) TQWT fea-
tures (2 features selected) –ACC = 0.71∗∗. Features used
to train these classification models for each feature-type are
summarized in Table 4. With respect to an overall feature
set (all 60 features combined), the classification performance
was: ACC = 0.84∗∗ using 10 features. All classification
results were evaluated by the permutation test as being
statistically significant.

IV. DISCUSSION
In the search for novel and more robust graphomotor
features that can be used to improve the quantification and
identification of GD in school-aged children, we introduced
three non-conventional advanced types of features, specifi-
cally, features based on modulation spectra, features based
on fractional order derivatives, and features based on tun-
able Q-factor wavelet transform. As each feature-type pro-
duced a different number of features, we employed feature
pre-selection to reduce the feature-space complexity and
minimize the effect of the curse of dimensionality occur-
ring when the number of analyzed features greatly out-
numbers the number of observations present in the dataset,
as well as to unify the number of features among the feature
sub-sets. With this approach, we reduced each feature-type
to 15 features with minimal cross-correlation. An important
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FIGURE 5. Violin plots of graphomotor features in both GD and HC groups (after removing the covariates). Figure notation: background of
the box plots represents vertically mirrored kernel density estimations; horizontal dashed lines represent medians; and a star(s) between
two violins mean(s) the p-value of Mann-Whitney U-test (∗∗ denotes p-value < 0.01, and ∗ denotes p-value < 0.05).

TABLE 2. Results of the statistical analysis.

TABLE 3. Results of the classification analysis.

observation to note here is that in all cases, the selected fea-
tures do not cover an entire spectrum of the graphomotor tasks
(TSK1–TSK7) under investigation. Moreover, the distribu-
tions of the tasks per feature-type vary as well. This indicates
that each individual type of the features can potentially be
used to describe slightly different task-specific aspects of
GD experienced by school-aged children supporting the use
of a variety of specialized feature-types to provide a more

TABLE 4. Features selected for the trained classification models.

robust and wide-scale description of the hidden complexities
underlying GD in general.

Regarding the results of the statistical analysis, it can be
seen that basic parameters such as mean tilt, height, and
length of writing were found as the most statistically sig-
nificant features in the case of the conventional (baseline)
feature set. More specifically, mean tilt during the drawing
of Archimedean spiral (TSK1) and rainbow (TSK6) showed
the strongest relationship with the presence of GD. As can
be seen, children with GD held the pen less steeply when
performing such spiral- and rainbow shape-based move-
ments. In addition, when compared with the cohort of healthy
children, sawtooth (TSK5) and rainbow (TSK6) drawn by
children with GD were found to be smaller in both height as
well as length further underlining the difficulties associated
with these tasks.

Another fact that can be observed in the results of the
statistical analysis is that as opposed to the conventional
features which consisted solely of the spatial (stroke length
and height) and dynamic (tilt) parameters, the top-ranking
non-conventional features mostly consisted of kinematic fea-
tures (velocity, acceleration, and jerk) computed in both
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horizontal as well as vertical projections, and dynamic fea-
tures (tilt). This observation is in line with the analysis
performed by a variety of previous studies [6], [65]–[67]
using kinematic features to quantify GD, and confirms the
fact that kinematic features are an important measure of the
quality of handwriting as well as drawing. Furthermore, such
features are specific to computerized analysis as they are
almost impossible to be quantified precisely using the human
perception of the final handwritten product.

With respect to the features based on modulation spectra,
all of the top-ranking features showed a positive correla-
tion with the presence of GD indicating the existence of an
increased low-frequency noise in the analyzed handwriting
signals. This noise seems to be relatively task-independent
as it appeared in all spiral-, loop- as well as sawtooth-based
movements. Moreover, in four out of five cases, the features
were based on acceleration or jerk, which points out to inabil-
ity of children with GD to perform a given graphomotor
task with steady and controlled velocity that is eventually
reflected in an increased noise in the acquired kinematic
signals (mathematical point of view) as well as in the lack of
fluency and efficiency during handwriting (clinical point of
view). Such observation is in line with the previous research
reporting non-fluent handwriting as being present in children
with HD (diagnosed with DD) [32], [68].

Regarding the top-ranking FD-based features, it may be
noticed that all of them were extracted from different grapho-
motor tasks (TSK1–TSK5) further underlying the need for
a variety of specifically-designed features to quantify GD.
The most significant FD-based feature, the mean velocity of
tilt extracted from TSK1, probably refers to the difficulties
in changing the direction of the Archimedean spiral caused
by hesitancy, distress, etc. This is an interesting finding as
it is in line with the most significant conventional feature
being the mean tilt, which highlights the importance of dif-
ferent tilt parametrizations. The rest of the most correlated
FD-based features are derived from velocity and accelera-
tion. This shows that FDs can be advantageously applied to
both kinematic as well as dynamic features. Additionally,
the values of α suggest that regular derivation is not optimal
for kinematic handwriting features, which is in line with our
previous research [43], [45].

Regarding the top-ranking TQWT features, the only
statistically significant correlation was found for the signal-
to-noise ratio of the vertical velocity extracted from the
rainbow task (TSK6). This probably shows that maintain-
ing steady velocity while performing this particular task is
not causing problems to healthy children, but is challeng-
ing for children with GD, which is in line with the previ-
ous publication reporting problems in vertical movements
in children with DD [6] caused by the psychological and
muscular fatigue in the finger system. The vertical movement
requires coordinated movement and finer flexions/extensions
of more joints (interphalangeal and metacarpophalangeal)
and therefore it is more complex than ulnar abductions of
the wrist [69], [70], which plays a key role in the horizontal

one, i. e. GD are more pronounced in the vertical projection
of handwriting/drawing. Next, we assume, that children with
GD are unable to quickly change the acceleration of their
handwriting. On the other hand, healthy children have fewer
problems with handwriting automation and therefore can
change the acceleration more fluently. This can indirectly
cause higher noise-level in the residual component of vertical
acceleration in the handwritten product of healthy children,
as can be seen in the second most significant TQWT feature.

Finally, concerning the results of the classification anal-
ysis, it can be seen that all of the three novel feature-types
achieved similar classification performance in comparison
to the conventional handwriting features. This shows that
a single type of feature, even if more complex, is not likely
to improve the identification of GD provided by the conven-
tional features significantly. However, as the results suggest,
when these features are combined, the classification perfor-
mance can be increased by approximately 10% in terms of
accuracy, 3% in terms of sensitivity and 10% in terms of
specificity. An important fact to note is that when compared
with the previous research, the results proposed in this work
might at first seem unsatisfactory as some of the recent
publications reported over 90% sensitivity [26], [28], [32].
However, those studies aimed at identifying HD in children
with DD using a complex acquisition protocol comprising
writing. The results proposed in this work are based solely on
graphomotorics and aim at predicting the presence of GD that
can lead to HD and possibly to DD. It is of great importance
to also focus on simple graphomotor movements as they form
the basis of handwriting, hence, a robust parametrization of
GD has a potential to be used as an early marker of DD
in children in pre-school age or first grades of a primary
school. Another important fact to note is that all of the feature-
types, as well as the conventional features, were selected
when training the combined model. In addition, except TSK4
(flipped version of the connected loops in TSK3), all of
the graphomotor tasks are present as well, This shows that
all of the selected features extracted from almost all of the
graphomotor tasks contributed to an improvement in the
identification of GD confirming the hypothesis of enhancing
the model’s capability to model the relationship between the
properties of the handwriting signals and the presence of GD
in school-aged children.

V. LIMITATIONS OF THE STUDY
This work has several limitations. First, we need to be aware
of the restricted statistical strength of the inference about the
population of school-aged children given a relatively small
sample size of 53 children. Next, only children attending
3rd and 4th grade of the primary school were enrolled in
this study. To obtain a more complex spectrum of hand-
writing signals, i. e. to have additional information about
the performance of the proposed graphomotor features and
their relationship with children’s age, grade, etc., handwriting
signals of children attending 1st and 2nd grade of the primary
school (possibly even pre-school children) as well as children
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attending the higher grades should also be analyzed. On the
other hand, our cohort includes children from the 3rd and
4th grade of primary schools, where the handwriting should
become automatic. Therefore a possibility to identify GD in
this stage is critical for the consequent diagnosis and thera-
peutic care of DD. The results proposed in this work therefore
laid the foundations (baseline) for future studies that should
bring evenmore information about GD in various age profiles
and their evolution in time. Next, deeper investigation and
design of the features can be performed, e. g. additional tun-
ing of the filter-banks to compute modulation spectra, other
formulations of fractional order derivatives or sub-bands of
the tunable Q-factor wavelet transform could be analyzed.
Next, various machine learning models should be trained and
compared in the future studies to get more information about
the classification performance of the proposed features and to
obtain the most robust models for GD identification. Finally,
the relationship between the classification performance of the
trained models with the feature space complexity as well as
the cross-validation setup should be investigated to evaluate
and confirm the robustness of the proposed methodology.
To sum up, concerning the limitations mentioned above, this
study should be considered as being rather exploratory and
pilot in nature, and its results should be confirmed by the
subsequent scientific research.

VI. CONCLUSION
In this study, we presented three novel types of graphomotor
features providing more robust and complex quantification of
GD in school-aged children. In each feature-type, we iden-
tified several features that significantly differentiate healthy
children and children with GD. Of note is the fact that the
novel features mostly quantified kinematic aspects of the
handwriting process that are very hard to be perceived by
a human examiner using only a final handwritten product.
In addition, we also showed that combining the proposed
graphomotor features with the set of conventionally used ones
can increase the prediction capability of the trained binary
classifier significantly. With respect to the acquisition proto-
col, all of the chosen graphomotor tasks but one appeared in
the final selection of the features used to train the combined
classification model. This confirms that using a variety of
basic graphomotor tasks requires coordinated movement of
fingers, wrist, elbow, shoulder as well as visuospatial cog-
nitive functions that allow the more advanced features to
quantify subtle and rather imperceptible manifestations of
GD using online handwriting.

To the best of our knowledge, it is the first work exploring
the possibilities of using modulation spectra, fractional order
derivatives and tunable Q-factor wavelet transform to extract
advanced graphomotor features for the purpose of quantifica-
tion and identification of GD in school-aged children. Based
on the reported results, we conclude that the proposed fea-
tures have a great potential to improve the computerized iden-
tification and assessment of GD. However, to generalize the

results, our findings should be confirmed by further scientific
research.
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