
1

GBBG Documentation
Grammar Based Building Generator

Content
Installation .. 2

Features .. 2

How it works ... 3

Shapes ... 3

Rules .. 4

Scope Rules ... 4

Split Rules .. 5

Repeat Rules .. 6

Grid Rules .. 7

Margin Rules .. 8

Component Rules .. 9

Derivation .. 9

Post-Process .. 10

Interfaces .. 11

Grammar Editor .. 11

Toolbar .. 11

Rule Selector ... 12

Rule Inspector ... 12

Builder ... 16

Terminal Shape Creator .. 17

Getting started ... 19

Create a grammar ... 19

Create Rules .. 20

Create Shapes ... 20

2

Installation
To install the tool the user needs to import the provided unity package into the project.

No further actions are required.

Features
 Derivation algorithm: this algorithm executes the derivation process. It selects

and applies the rules given by a specific grammar.

 Editable grammar. The rules can be modified form the editor interface.

 Easy creation of rules and shapes

 Visual representation of the derivation. The user can explore all steps of the

derivation process using a visual guide.

 Custom interface to edit grammars. Allows the user to create, delete, duplicate

and edit rules. Also can create shapes easily for the selected grammar.

 Custom tool to prepare the 3D models for the post-production process.

3

How it works
A grammar-based generation is a form of procedural generation. The main elements of

this system are shapes and rules.

Shapes
Shapes are the fundamental building blocks of the system. They are identified by a

unique string called a symbol, which distinguishes each shape and its instances. Shapes

represent a defined area of space, known as scope, which can be either two-dimensional

or three-dimensional. The scope is characterized by its position, rotation, and scale.

Additionally, shapes can be classified as either terminal or non-terminal. Terminal

shapes are those that end the derivation process and cannot have any rules applied to

them.

Propery Data type Description

Position Vector3 The global position of the shape.

Rotation Quaternion The global rotation of the shape.

Scale Vector3 The global scale of the shape. It only contains up
to 3 decimal places.

Symbol String The identifier of the shape.

IsTerminal Bool If the shape is terminal or not.

Dimensions Int The number of dimensions of the shape. To work
properly must be 3 or 2.

PreferedSize Vector3 The preferred size of the shape. On application of
rules with automatic sizing (repeat, grid and
margin), the shape will be as close as possible to
the preferred size.

4

Rules
Rules function as operators within the system, with the purpose of modifying and

replacing existing shapes. Each rule follows a specific format:

Predecessor -> Operator(Parameters){Successor}

 The predecessor specifies the shape to which the rule can be applied, and it must

be a non-terminal shape.

 The operator, or rule type, determines the specific action performed by the rule,

such as altering the scope, dividing the predecessor shape in various ways, or

other actions.

 The parameters vary depending on the rule type and define the characteristics

of the shapes generated when the rule is applied.

 The successors are the shapes that result from the application of the rule.

There are a total of 6 types of rules in this framework:

Scope Rules
The outcome is a single shape that has undergone translation, rotation, or scaling. When

scaling involves changes in dimensions, any dimension that doesn't exist will be

represented as zero.

The scope rule type can also be used to replace one shape with another while

maintaining its scope, introducing randomness in the selection of a successor to add

variety to the derivation process.

In the three parameters of the rule, we can specify whether the given values are added

to the existing values or completely overwrite them. For translation and rotation, we

can determine whether these operations occur in the global space or the local space of

the shape. Lastly, in the scaling operation, we can define whether the parameters are

additive or multiplicative.

5

Split Rules

The outcome is a collection of shapes whose combination fills the entire extent of the

predecessor shape. The parameters that determine how the rule is applied are as

follows:

 The axis that is perpendicular to the planes defining the cuts. These axes

correspond to the local axes of the predecessor shape.

 A list of values that specifies the scaling of the resulting shapes along the

selected axis. The list should have fewer elements than the list of successors to

ensure the cuts align properly.

 A Boolean value that indicates the direction of the cuts. When set to true, it is

labelled as "FromRoot," which means the cuts are made from the root towards

the rest of the shape. When set to false, it is labelled as "ToRoot," indicating that

the cuts are made towards the root.

6

Repeat Rules
The repetition rule functions similarly to division, but if we return to the analogy of

mathematical operators, if the division rule is like addition, the repetition rule is like

multiplication. In other words, all the successors will be of the same type, and the

distance between cuts will adjust according to the preferred scale of the successor

shape. Therefore, the only parameter needed will be the axis that defines the division

plane.

7

Grid Rules
The grid rule operates similarly to the repetition rule, but instead of divisions along a

single axis, divisions are made along two axes. Similarly, all successor shapes will have

the same scale. The only parameter needed is the axis, which corresponds to the axis

that is parallel to both planes of division.

8

Margin Rules
Margin rules generate up to nine successors arranged in a 3 by 3 pattern. These

successors fall into three categories: corners (C), edges (E), and center (X). The

parameters that determine how this rule is applied are as follows:

 The axis that is parallel to the division planes.

 The margin value (a floating-point number) that determines the width of the

margin.

 The type of margin, whether the margin value is an absolute value or a relative

value to the predecessor.

 The orientation of the corners: whether they all face outward, all face in one

direction, or all face inward.

 A boolean value that determines whether the central piece should be included

among the successors.

9

Component Rules
The component rule divides a shape into its constituent parts, dividing a cube into its

individual faces. Each of these faces will be represented as a two-dimensional shape.

The parameters for this rule are as follows:

 Axis: Specifies the orientation for the next step.

 Division mode: Determines which faces will give rise to a new shape. The options

include the top face, bottom face, side faces, or any combination of these.

The resulting shapes are determined based on the order of the successors listed.

Derivation
The derivation is the process of applying rules to the shapes. To apply the rules its done

using a recursive function that applies the following algorithm.

It starts with a list of shapes that it is called axiom and defines the initial state. The

algorithm works as follows:

1. Given an active shape (S) in the list, the algorithm checks if the shape is terminal,

if it’s non-terminal the algorithm proceeds.

2. A rule is selected from the rules that can be applied to the shape S.

3. The successor or successors (S’) to the shape S is computed.

4. The shape S is deactivated and removed from the active list

5. The S’ shapes are added to the active shape list.

6. The function is called to derivate this shapes.

When the derivation finishes all remaining shapes are terminal ones.

10

Post-Process
After the derivation is done, all terminal shapes are replaced with the final 3D mode.

This is done following the post-process rules, which pair a symbol (string) with a 3D

model.

11

Interfaces
Grammar Editor

The grammar editor interface has four main segments.

 (RED) The grammar selector. In this field the user selects a grammar to be edited.

 (YELLOW) The toolbar contains buttons to create, delete and duplicate rules and

shapes.

 (GREEN) The rule selector is used to select rules by clicking on it.

 (INSPECTOR) The inspector shows all the parameters that can be edited from the

selected rule.

Toolbar
 New Rule: Creates a new rule. A popup window lets the user select the type of

rule. This rule will be saved as:

“Assets/GBBG_Assets/<GrammarName>/Rules/<RuleName>.asset

 Delete rule: Deletes a rule permanently. A popup will ask twice to prevent miss-

click.

 Duplicate Rule: Creates a new rule with the same type and parameter values as

the selected rule.

 Create Shape: Creates a new shape, which can be tri-dimensional, bi-dimensional

or empty. The symbol of the shape is defined in the creation box and the shape

will be saved as:

12

“Assets/GBBG_Assets/<GrammarName>/Shapes/<ShapeSymbol><2D|3D|Empty>.

asset”

 Production rules / post-process rule selector: Lets the user change the content

of the rule selector. It can display production rules or post-process rules.

Rule Selector
The rules are displayed in a grid and the user selects them by clicking. There is a search

bar to filter the rules by name.

Rule Inspector
The rule inspector changes slightly depending of the type of the selected rule, but

there’s some parameters that are shared across all rules.

 Rule type: indicates the user the type of rule. This parameter cannot be modified.

 Name: Is the name of the saved file and the identifier of the rule on the rule

selector.

 Predecessor: The symbol (string) of the shape that this rule can be applied to.

 Successor: the successor can store a list of possible successors, but always must

be at least one. For each possible successor the user can specify the chance of

each possible successor. Before picking one all chances are normalized, so it

doesn’t have to add all to one. If there’s two possible successors with chances of

1 and 2 respectively, the final chances will be 0.33 and 0.66 over 1.

Scope
The translation, rotation and scale can be

activated using a toggle. If one of them is

deactivated it will not affect the successor

shape, ignoring the given values of the

parameters.

 Translation value: a Vector3 that stores

the translation to be applied.

 Translation mode: defines how this

translation will be applied.

o Add: adds the translation value

to the current position

o Set: sets the current position to

the translation value.

 Translation space. Defines if the

translation is applied relative to the

world or relative to the predecessor shape.

 Rotation Euler: a vector3 that stores an Euler rotation.

 Rotation space: defines if the rotation will be applied relative to local or global

space.

13

 Rotation mode: defines if the rotation value will be added or set the rotation to

the value.

 Scale value: a Vector3 that stores the scale value.

 Scale mode: defines if the scale will be added or set to.

 Scale absolute/relative:

o Absolute: the value will be treated as an additive.

o Relative: the value will be treated as a multiplier.

Split
The split rule, instead of having only one

successor has a list of them, but the

functionality is equal.

The specific parameters of the split rule are:

 Axis: the axis defines the orientation

of the cuts. The defined axis will be

perpendicular to the division planes.

The chosen axis is the local axis of

the predecessor shape.

 Cut direction: specifies the order of

the cutting. “FromRoot” will make

the cuts from the root of the

predecessor shape outwards, and

“ToRoot” will do the cuts from the far side to the root.

 Split points: define the size of the successor pieces. This list is always one shorter

than the successor list because the las shape will always reach to the end of the

scope of the predecessor shape.

Repeat
The repeat rule has only one parameter, as

the width of the resulting shapes and the

number of successors will be calculated

based on the preferred size of the shape.

 Axis: the axis defines the orientation

of the cuts. The defined axis will be

perpendicular to the division

planes. The chosen axis is the local axis of the predecessor shape.

14

Grid
The grid rule has only one parameter, as the

width of the resulting shapes and the

number of successors will be calculated

based on the preferred size of the shape.

 Axis: the axis defines the orientation

of the cuts. The defined axis will be

parallel to the division planes. The chosen axis is the local axis of the predecessor

shape.

Margin
The margin rule has the following

parameters:

 Margin type: Absolute will take the

margin value as is. Relative will

multiply the margin value with the

predecessor scale in each axis.

 Margin value: defines the width of

the margin, if margin type is set to

“relative” margin value must be

between 0 and 0.5.

 Corner orientation: defines the

orientation of the successor shapes

on the corners. By default all face the same direction as the predecessor, but

soma plications need them to face out or face in.

 Include centre piece is a toggle that allows the user to deactivate the central

piece and get only a ring of successors.

 The successors in this rule are specified by the position. Centre, corner and edge.

Component
The parameters of the component rule are

the following:

 Axis: defines the orientation to

define which faces are top and

bottom. The axis will be

perpendicular to the top and

bottom.

 Split Mode: defines which faces will

result after the application of the

rule. Depending on the mode

selected, the rule will only demand

that type of successor.

15

Post-process
Post-process rules only have two parameters and are distinct of all previous ones.

 Symbol: the symbol of the terminal

shape that will be substituted.

 Asset: the prepared 3D model that

will be instantiated in its place.

16

Builder
The builder is the interface that is used to set and execute the derivation process.

Its parameters are:

 Axiom: List of initial shapes in the derivation process.

 Grammar: the grammar that will be used.

 Do Post Production: Toggle that controls if the post-production is executed.

 Use Random Seed: controls the seed that is used in the derivation process for all

random number generations. If true the system will use a random seed each

time. If fals the seed will not change.

 Random seed: Displays the current random seed. If “Use Random Seed” is not

selected the user can input a specific seed. This seed must be within the bounds

of a signed integer.

 Build Button: Executes the derivation process.

17

Terminal Shape Creator
Terminal Shape Creator is a tool that is used to easily prepare 3D models to be used in

the post-production process. The tool guides the user across 7 easy steps.

1. Select a position in space using the given GameObject. The position can be

selected modifying the vector3 in the interface or moving the GameObject in the

scene.

2. Select the 3D model. Import the 3D model to the scene and drag it from the

hierarchy to the interface.

3. Adjust the selected position to match the position and rotation of the root.

18

4. Define the volume of the 3D model, a visualizer is displayed to help the user see

the size of the volume.

5. Name the object

6. Press the “Create” button to apply all the settings.

7. Save the created object as a prefab. This prefab can be used in the post-process

rules.

19

Getting started
Create a grammar
To create a grammar it can be done using Unity’s create menu. Rules and shapes can

also be created this way but is heavily recommended that they are created using the

Grammar Editor.

Once the .asset file of the grammar is created the user must open the Grammar Editor.

From unity’s toolbar: Window > GBBG > Grammar Editor.

Check the Grammar Editor part on this manual for more information about the Grammar

Editor.

20

Create Rules
Form the Grammar Editor, with a grammar selected. Click on the button “New Rule”. On

clicking will appear the following pop-up window, select the type of rule to create.

When a rule is created, it will appear in the rule selector section of the Grammar Editor.

Make sure to set the grammar editor to production rule mode to view the production

rules or to post-process mode to view the post-process rules.

The asset file (.asset) of the rules is saved in the folder:

“Assets/GBBG_Assets/<GrammarName>/Rules

Create Shapes
To create shapes from the Grammar Editor the user must use the “Create Shape”

button. When clicked it will appear a pop-up window where the user will name the

shape (file name and symbol) and then click the button “3D”, “2D” or “Empty” to create

the shape of the selected type.

The asset file (prefab) of the shapes is saved in the folder:

“Assets/GBBG_Assets/<GrammarName>/Shapes

