

Grado en ingeniería informática de gestión y sistemas de información

Incorporación de computación afectiva en el diseño de interfaces de usuario

Estudio de viabilidad

ERIC FRADERA PEDRAZA TUTOR: ALFONS PALACIOS

2021-2022

Índice

Índice	de ilustraciones	IV
Índice	de tablas	VI
1. Es	tudio de viabilidad	1
1.1.	Planificación inicial	1
1.2.	Desviación	1
1.3.	Presupuesto	3
1.3	.1. Recursos humanos	4
1.3	.2. Recursos materiales	4
1.4.	Desglose por tareas	5
2. An	nálisis de viabilidad	7
2.1.	Análisis de viabilidad tecnológica	7
2.2.	Análisis de viabilidad económica	7
2.3.	Análisis de viabilidad medioambiental	8
2.4.	Aspectos legales	9
3. Bil	bliografía	11

/				
T 1	•	1	•1	aciones
Indi	$\mathbf{\Omega}$	\mathbf{A}	HILLSTPS	MANAG
			11115112	11 1111165

Fig. 1	Organización	del Provecto.	Elaboración	propia.	
--------	--------------	---------------	-------------	---------	--

Índice de tablas

Tabla 1 Desglose por tareas. Elaboración propia	3
Tabla 2 Presupuesto general. Elaboración propia.	4
Tabla 3 Horas de trabajo. Elaboración propia	4
Tabla 4 Recursos Materiales y software. Elaboración propia.	4
Tabla 5 Desglose de coste por tarea. Elaboración propia.	6

Estudio de viabilidad 1

1. Estudio de viabilidad

1.1. Planificación inicial

La herramienta utilizada para la gestión de proyectos es ProjectLibre, una alternativa Open Source que permite la panificación de horas y recursos.

El diagrama de Gantt con la distribución de fechas y es la siguiente:

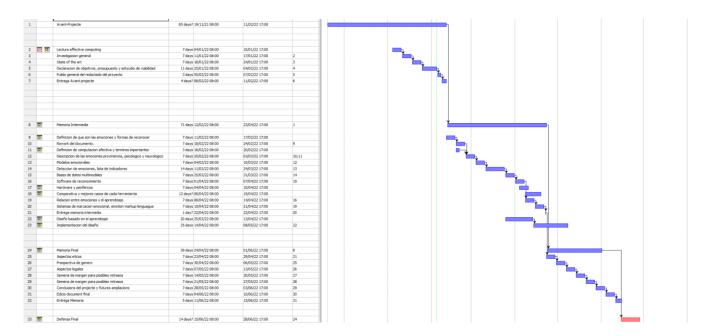


Fig. 1 Organización del Proyecto. Elaboración propia.

Actualmente como se puede observar se han planeado dos semanas de margen al final del proyecto que están destinadas a la finalización de tareas que hayan podido quedar a medias o que por motivos externos no se hayan podido realizar en las fechas indicadas. Estas dos semanas proporcionan una margen que asegura la finalización del proyecto.

1.2. Desviación

El proyecto mayormente ha seguido la planificación inicial. Aun así, se ha eliminado el apartado de genero a causa de no requiere para el proyecto final. También se ha eliminado el apartado de privacidad que se ha fusionado con aspectos éticos. Se ha adelantado todo el proceso de memoria teórica para antes de la entrega de la memoria intermedia. Se ha añadido la creación de la wiki dentro de desarrollo. Todos estos nuevos elementos forman parte del periodo entre la memoria intermedia y la memoria final.

Numero	descripción tarea	Horas	Data inicio	Data fin
	AvantProjecte	80	19/11/2021	11/02/2022
1	investigación general	30	11/01/22	17/01/22
2	Estat de l'art	25	18/01/22	24/01/22
	declaración de objetivos		25/01/22	04/02/22
	presupuesto y estudio de			
3	viabilidad	15		
4	Pulido final	10	05/02/22	11/02/22
	Memoria intermedia	255	11/02/2022	23/04/2022
	definición de que son las		11/02/22	17/02/22
	emociones y formas de			
5	reconocer	20		
	definición de		18/02/22	20/02/22
	computación afectiva y			
6	términos importantes	10		
	descripción de las		25/02/22	03/03/22
	emociones proveniencia,			
	psicológico y			
7	neurológico	30		
	Modelos emocionales de		04/03/22	10/03/22
8	representación	40		
	detección de emociones,		11/03/22	24/03/22
9	lista de indicadores	<u>55</u>		
	Bases de datos		25/03/22	31/03/22
	multimodales beneficio			
10	y que tener en cuenta	15		
	Software de		01/04/22	07/04/22
11	reconocimiento	15		
	Hardware de		04/04/22	10/04/22
12	reconocimiento	15		
	Comparativa en función		08/04/22	19/04/22
	de usabilidad, fiabilidad			
13	del	15		
	relación entre emociones		08/04/22	14/04/22
14	y el aprendizaje.	20		

Estudio de viabilidad 3

15	Aspectos legales	10	07/05/22	13/05/22
16	Rework del documento.	10	14/04/2022	23/04/2022
	Memoria final	210	23/04/2022	01/06/2022
17	Diseño de la aplicación	60	25/03/22	22/04/22
	implementación		14/04/22	08/05/22
18	aplicación	100		
19	Perspectiva de genero	8	30/04/22	06/05/22
20	Aspectos éticos	8	23/04/22	29/04/22
	Edición del documento		28/05/22	10/06/22
21	final	8		
	Preparación de la		01/06/2022	₹? /06/2022
22	presentación final	25		
23	Presentación final	1	₹? /06/2022	₹? /06/2022
	Horas totales	545	19/11/2021	01/06/2022

Tabla 1 Desglose por tareas. Elaboración propia.

1.3. Presupuesto

El presupuesto del proyecto tiene en cuenta tanto el desarrollo del anteproyecto como el propio proyecto y producto final.

Estas dos partes tienen principalmente un coste humano, debido a que tiene una labor de investigación extensa que será plasmado en la memoria y funcionará como producto del proyecto. El salario considerado es de 14 euros [1] la hora, pero ha sido encarecido hasta 22 euros la hora a causa de costes asociados al teletrabajo como luz, agua, gas, internet etc.

Además de esta parte teórica habrá una pequeña puesta en escena donde se utilicen estos consejos que se han investigados para diseñar una aplicación que haga un buen uso de estas tecnologías que requerirá de ciertos dispositivos y periféricos.

Por este motivo se separa el coste del hardware y recursos humanos.

1.3.1. Recursos humanos

Descripción	Coste
Recursos humanos	11990€
Hardware	1058.51€
Total	13048.51€

Tabla 2 Presupuesto general. Elaboración propia.

Descripció	ón	Precio hora	Horas	Coste total
Horas	ingeniero	22	545	11990€
Junior				

Tabla 3 Horas de trabajo. Elaboración propia.

1.3.2. Recursos materiales

	Coste			Amortización	
Descripción	inversión	Nº anys	€/año	meses	Coste
Ordenador					
(i7.7700hq,					
16gb ram,					
1060m)	1500€	3	500€	9	375€
Adobe Creative					
cloud					544.51
Office pro					63€
JetBrains					
Toolbox					139€
Coste total					1058.51€

Tabla 4 Recursos Materiales y software. Elaboración propia.

Estudio de viabilidad 5

1.4. Desglose por tareas

Numero	descripción tarea	Horas	Precio hora	Precio final
1	investigación general	30	16	480.00€
2	State of the art	25	16	400.00€
	declaración de		16	
	objetivos presupuesto			
3	y estudio de viabilidad	15		240.00 €
4	Pulido final	10	16	160.00€
	definición de que son		16	
	las emociones y			
5	formas de reconocer	20		320.00€
	definición de		16	
	computación afectiva			
	y términos			
6	importantes	10		160.00€
	descripción de las		16	
	emociones			
	proveniencia,			
	psicológico y			
7	neurológico	30		480.00€
	Modelos emocionales		16	
8	de representación	40		640.00 €
	detección de		16	
	emociones, lista de			
9	indicadores	<u>55</u>		880.00€
	Bases de datos		16	
	multimodales			
	beneficio y que tener			
10	en cuenta	15		240.00€

	Software de		16	
11	reconocimiento	15		240.00€
	Hardware de		16	
12	reconocimiento	15		240.00€
	Comparativa en		16	
	función de usabilidad,			
13	fiabilidad del	15		240.00€
	relación entre		16	
	emociones y el			
14	aprendizaje.	20		320.00€
15	Aspectos legales	10	16	160.00 €
	Rework del		16	
16	documento.	10		160.00€
17	Diseño de la aplicación	60	16	960.00 €
	implementación		16	
18	aplicación	100		1,600.00€
19	Perspectiva de genero	8	16	128.00 €
20	Aspectos éticos	8	16	128.00€
	Edición del		16	
21	documento final	8		128.00€
	Preparación de la		16	
22	presentación final	25		400.00€
23	Presentación final	1	16	16.00 €
	Horas totales	545	16	8,720.00€

Tabla 5 Desglose de coste por tarea. Elaboración propia.

Análisis de viabilidad 7

2. Análisis de viabilidad

2.1. Análisis de viabilidad tecnológica

La viabilidad tecnológica de este proyecto es una parte más del proyecto. La tecnología que es capaz de obtener respuestas de los usuarios forma parte del estudio.

Parte del objetivo es contrastar y comparar la información obtenida de los sensores biométricos y analizar su utilidad y la capacidad de inferir en el estado emocional del usuario.

Las herramientas principales que se requieren son un editor de texto para la redacción de la memoria y de los documentos del kit de computación afectiva. La web que hará de kit estará producida con mkdocs hosteado en github pages.

En la parte del prototipo por un lado tenemos el diseño de la aplicación que reeditar de una definición de requerimientos y a continuación un prototipaje a usando herramientas de wireframe como adobe XB o figma.

La aplicación será desarrollada con Flutter y firebase como base datos. Flutter es un framework de creación de aplicaciones multiplataforma. Se ha usado con anterioridad como en la Somhackathon 2019. Aun así, el conocimiento de flutter no es muy amplio y requiere de aprender durante el proyecto. Flutter es un framework con mucho potencial de crecimiento. La integración de Flutter con Firebase hace más sencillo el desarrollo de aplicaciones con esta base de datos. Firebase es una base de datos NoSQL por lo que será sencillo de iterar la estructura de los datos durante el proyecto. Aunque se conoce poco Flutter hay una gran comunidad y soporte que sin duda ayudara al proyecto.

2.2. Análisis de viabilidad económica

La viabilidad económica del proyecto ya ha sido analizada a través del presupuesto. Este presupuesto es totalmente viable debido a que ya que el mayor peso del proyecto reside en las horas de trabajo personal estipulado por el TFG.

La viabilidad económica de la computación afectiva como producto es mucho más compleja. Por un lado, es pronto para saber de qué formas se materializará. Los *wearables* aunque se han abaratado siguen teniendo un costes elevado, en especial aquellos que hacen uso de

sensores como GSR. Por otro lado, quizás es posible desarrollar aplicaciones haciendo uso de dispositivos ya populares para una parte importante de la sociedad como ordenadores o dispositivos móviles. En esta situación el coste vendría del procesamiento de datos que podrían ser monetizas de múltiples formas.

Observando el panorama actual se puede ver a la industria moverse hacia el uso de dispositivos que el público general ya dispone. En caso de que estas tecnologías se normalicen muchas de las aplicaciones que ya se han comentado podrían ser desarrolladas y podrían suponer un mercado importante.

2.3. Análisis de viabilidad medioambiental

Una vez más el estudio tienes dos vertientes. Una parte tiene como estudio de viabilidad el propio proyecto y la otra affective computing.

Al nivel del proyecto se tiene en cuenta todas las necesidades que este requiere. Por un lado, tenemos el gasto energético de los equipos. En este proyecto el impacto proviene principalmente del uso de un portátil, así como la energía del propio habitáculo, internet etc. El impacto energético es difícil de calcular debido a que no es un lugar estanco donde poder obtener el impacto energético. Aun así, podríamos ver el impacto que podría suponer de haberse hecho en otras condiciones de una oficina. En EE. UU. los equipos de tecnología y telecomunicaciones implican un 3% de la energía nacional[2]. Este consumo es considerable y no para nada negligible.

La segunda parte viene de los residuos que se generan a través de la basura informática. El proyecto hace uso único de un ordenador personal. Los productos tecnológicos como un ordenador portátil generan residuos difíciles de reciclar. Es por ello importante decidir la compra de ordenadores pensando en la longevidad de estos o la capacidad de ser reparados para no ser desechados al poco tiempo. El 90% de los equipos acaban en vertederos no siendo reciclados [2], por ello hay que planificar que vías existen para el reciclaje de componentes para evitar su desecho.

A nivel global la computación afectiva podría suponer un impacto ecológico masivo si se extiende al público general. Llevar la computación afectiva al gran público implica la fabricación de grandes cantidades de sensores que obtengan la información. Como ya se ha

Análisis de viabilidad 9

explicado previamente los residuos generados a través del desecho de estos sensores podrían ser problemáticos. Es cierto que es complicado estimar en que formas de va a materializar la computación afectiva, pero de ser a través de un producto de consumo el impacto ambiental podría ser de alta importancia en residuos tecnológicos.

Finalmente tenemos el impacto ambiental que supone el entrenamiento de la inteligencia artificial. Los algoritmos que se hacen uso para entrenar modelos de IA hacen uso de grandes cantidades de computación. Éstas tienen una vez más el problema de los residuos tecnológicos, debido a la constante actualización de GPUs que permiten que estos algoritmos puedan ser procesados. Finalmente, el gran problema sería energético ya que se estima que para 2025 el coste energético podría llegar al 10% del consumo de energía global [3].

Para que la computación afectiva sea responsable con el medio ambiente es clave encontrar formas de reducir el su impacto energético de estos algoritmos de IA, así como migrar energías verdes para reducir su impacto.

2.4. Aspectos legales

Sin duda la privacidad es un tema candente debido a la recolección masiva de datos que grandes plataformas hacen a diario. La computación afectiva es una fuente de información que viola la privacidad de los usuarios de forma muy invasiva.

Los propios investigadores [4] opinan que los peligros de tecnologías de detección facial son un peligro, y en varios países ya se han establecido normas en contra de estas tecnologías. Aun así, se defiende que la prohibición absoluta de estas técnicas podría crear barreras que podrían perjudicar de grandes avances. En el siguiente paper[21] se habla de cómo la regulación de estas tecnologías para marcar el uso de estas podría ayudar a dar seguridad a los usuarios y reducir el escepticismo.

Debido a que hay pocas leyes que se ajusten específicamente a el tratamiento de datos biométricos la mayor parte de empresas trabajan bajo el GDRP para asegurar la privacidad de todos sus usuarios.

A nivel de proyecto la parte práctica toda experimentación o datos recolectados han de quedarse de forma anónima.

Bibliografía 11

3. Bibliografía

[1] "Salario para Ingeniero Informático en España - Salario Medio." https://es.talent.com/salary?job=ingeniero+inform%C3%A1tico (accessed Apr. 18, 2022).

- [2] A. C. Salinas, "Material informático y contaminación medioambiental", Accessed: Feb. 09, 2022. [Online]. Available: http://www.gnu.org/copyleft/fdl.html.
- [3] "AI can help us fight climate change. But it has an energy problem, too | Research and Innovation." https://ec.europa.eu/research-and-innovation/en/horizon-magazine/ai-can-help-us-fight-climate-change-it-has-energy-problem-too (accessed Feb. 09, 2022).
- [4] "Emotion AI researchers say overblown claims give their work a bad name | MIT Technology Review." https://www.technologyreview.com/2020/02/14/844765/ai-emotion-recognition-affective-computing-hirevue-regulation-ethics/ (accessed Jan. 27, 2022).
- [5] L. Jonathan Steen and P. Kim, "AFFECTIVE COMPUTING: INVASIVE TECHNOLOGY AND LEGAL CONSIDERATIONS TO PROTECT CONSUMERS," vol. XI, no. 1, 2010, doi: 10.48009/1_iis_2010_577-584.