Centre adscrit a la

EEscola Superior upf. Mt o
Politécnica Burcelona

Grau en Enginyeria Informatica de Gestid i Sistemes d’Informaci6

IMPLEMENTATION OF A VULNERABILITY ANALYSIS SERVICE OF
PUBLIC HOSTS WITH SAAS MODALITY

Thesis

ALEJANDRO COSTA RUEDA
TUTOR: LEONARD JANER-GARCIA

2021-2022

u TecnoCampus
[} Mataré6-Maresme

Abstract

Today almost all companies base their business models on web applications and
online services. These services are public to everyone, including malicious agents
that can attack these business models. Many of these companies do not have the
knowledge, time or resources to analyze if their service is free of possible attacks.
With this project, we try to create a tool that can help these companies to know
the possible dangers and attacks to which their service is open, by analyzing the

vulnerabilities that the host may have.

Resum

Actualment gairebé totes les empreses basen els seus models de negoci en aplica-
cions web i serveis en linia. Aquests serveis sén publics per a tothom, inclosos els
agents maliciosos que poden atacar aquests models de negoci. Moltes d’aquestes
empreses no disposen del coneixement, del temps o dels recursos per analitzar si
el seu servei esta lliure de possibles atacs. Amb aquest projecte intentem crear
una eina que pugui ajudar a aquestes empreses a coneéixer els possibles perills i
atacs als quals esta obert el seu servei, mitjancant I'analisi de les vulnerabilitats

que pot tenir el host.

Resumen

Hoy en dia casi todas las companias basan sus modelos de negocio en aplica-
ciones web y servicios online. Estos servicios son publicos para todo el mundo,
incluidos agentes maliciosos que pueden llegar a atacar estos modelos de nego-
cio. Muchas de estas empresas no tienen los conocimientos, el tiempo necesario
o los recursos para analizar si su servicio esta libre de posibles ataques. Con este
proyecto intentamos crear una herramienta que pueda ayudar a estas empresas a
conocer los posibles peligros y ataques a los que esta abierto su servicio, mediante

un analisis de las vulnerabilidades que puede llegar a tener el host.

Table of Contents

List of Figures 1]
1 Introduction 1
2 Objectives and scope 3
3 Theoretical Framework 5
3.1 Cybersecurity 5
3.2 Similarsolutions L 5
3.2.1 Installedsolutions 5

3.2.2 OnlineSolutions 6

3.3 Vulnerability Analysis Tools 7
3.3.1 Nessus 7

3.3.2 OWASP ZAP ..ottt 12

3.3.3 NP e 17

3.3.4 MetasplOitcccviiiiiee i 23

3.3.5 SOIMAP i 26

3.3.6 WPSCAN ... 28

3.3.7 JOOMISCAN ...ttt 30

3.3.8 TLSSLEM. ..ot 35

3.4 Web TeChNOIOGIESc.eeeeeiiii e e 36

3.4.1 Front-end....

3.4.2 Back-end.....

4 Methodology

5 Development
5.1 Definition of the functional and technological requirements
5.1.1 Functional Requirementsccccveiiiie e
5.1.2 Technological ReqUirementscccooveiiiiiiiiiic i
5.2 DeVvelopmeENnt PrOCESS.cuii ittt
5.2.1 Design of the web application..............ccccoooi i
5.2.2 Code Tools INtegrationcccveiiiieiiiie e
5.2.3 Code Front-eNnd..........ccooiiiiiiiiiiiie e
5.2.4 Code Back-end...........ccooiiiiiiiii

5.2.5 Scan Server

5.2.6 Database.....

6 Conclusions
B.1 DIfICUIRIES ..ot
6.2 FUuture iNVeStIgatioNS..........c.ooiiiii i

6.3 Personal reflections

7 Bibliography

41

43

43

43

44

45

45

47

53

56

59

61

64

64

65

65

67

List of Figures

3.1 Scan folder and new scanoption 8
3.2 Scantemplates 9
3.3 Configurenewscan e 9
3.4 SCan CONFIQUIEA.ccueiiiieiii s 10
3.5 Scan fiNISNEdccooiiii 10
3.6 General results of the SCaN ... 11
3.7 Detailed SCaN reSUILS.........occuiiiiiiiie s 11
3.8 WEICOME PAQE....cc ittt e e e e e e 13
3.9 Introduce Urlt0 @ttackcccoviiiiiii 14
3.10 Results Of the SCAN..........cciiiiii e 15
3.11 Detailed results of the SCaN ..o 16
3.12 Result of a scan to the port 22, 113 and 139. Source [8].........ccccovveviiveviinnnnn 18
3.13 Example of SYN request and open port. Source [8]........ccccccvvveviiieviieeiiinnnn, 18
3.14 Example of SYN request and closed port. Source [8]........ccccceevivveiiieeiiinnnn, 19
3.15 Example of SYN request and filtered port. Source[8]..........ccocvvvviiviiiiiieninnnnn, 19
3.16 Result of scan metasploitable2..............ccccvviiii i 21
3.17 Result of scan metasploitable2 with services version............cccccoceciiieinnnn, 22
3.18 Entry message of metasploit...........cccveviiiiiiiiiiee e 24

3.19 Results Of VSIIPA 2.3.4 ... 24

3.20 ReSUlts Of VNC 3.3 ... s 25
3.21 Intercept request With BUIPSUILE..........cooviiiiiiie e 27
3.22 Save request iN DUrPSUITE..........oooiiii i 27
3.23 Execute sglmap with saved request...........ccooveiiii i 28
3.24 ReSUIts Of SQIMAP.....cciiiii e 28
3.25 ReESUIS OF WPSCAN ...t 29
3.26 joomscan command to attack host............cccocveiiiii i 32
3.27 ReSuUlts Of JOOMSCAN.......c.ciiiiiiiiii s 33
3.28 Enumeration of the COMPONENtS.........ccccoiiiiiiiiie e 34
3.29 TLSSled command on host 192.168.56.1 443c.ccceiiiiiiiinie e, 35
3.30 Files where the results are stored ..., 35
3.31 ReSUIt Of SSI SCAN ..o 36
3.32 Poll from stateofjs [14]coovieiee e 37
3.33 Poll from stateofjs [14]ccovvieeee e 38
3.34 Performance comparison. Source [15]cccccccvviiiiiiiiec e 39
3.35 Poll from stackoverflow[19] ... 40
5.1 Diagram of the application................ccooiiiiiii i 45
5.2 Import and usage of python-nmap. Source [20].........c..cccocveeviieiiiie e, 48
5.3 Example of result of a scan. Source [20].........cccceviiiieiiieiiiee e 48

5.4 WiIndow to activate the APl ...t 49

5.5 Example of capturing the output of traceroute............c.cccccoevviiiiiiiiiic i, 50
5.6 The script finds where is the output and saves the path to use it later.......... 51

5.7 The [+] signs define what are they checking, and the [++] signs are the

results of that ChecCK ... 51
5.8 Structure that returns the wpscan_out_parse libraryccccooeviiiiiiinnnn. 52
5.9 WEICOME PAGE. . ..ot 53
5.10 ReQISIEI PAGEooiiiiiii s 53
5.1 LOGIN PAGE ...ttt 54
5.12 MAIN PAGE ...t 54
5.13 Create oSt PAgE.......cooiiiiie e 55
5.14 HOSEIN detail........ocvviiiiii s 55
5.15 Create SCAN PAQgEccuveiiiie ettt e e e e e e e 56
5.16 Diagram of the scan back endcccoo o 57
5.17 EXample Of r€SUIL.........c..oooiii e 59

5.18 Diagram of the databasecccouvi oo 62

Vi

Chapter 1. Introduction 1

1. Introduction

This Final Degree Project aims to create a service able to analyse defence vulnerabil-
ities in public hosts. The project is part of a bigger project developed with ESED Ltd."

with a Software as a Service model.

The security analysis is normally made manually and is a process that takes a lot of
time. Some businesses don’t have the time or the resources to carry out a complete
vulnerability analysis exam. Some of these tests can not be made with the desired
periodicity and intensity, because several of these auditions are really time-consuming
and require multiple steps. At the end of the day, companies work with a tight sched-
ule that they have to fulfil, and the ones that make the decisions do not use to have a
technical profile to notice that their businesses might be in grave danger. This situation
can lead to some security breaches that can gravely harm the company, like exposing
information about the clients, being unable to use their equipment or losing control of

its data.

Through lots of analysis, frameworks of attack can be developed in order to eliminate
the need for a person manually testing those day-to-day vulnerabilities. All these frame-
works save a lot of time to pen-testers but they can also be programmed to be made
periodically and extract daily reports of the vulnerabilities present in the host. Those
reports can be presented to justify the need for more resources, therefore saving time

for the members of the security team.

There are lots of companies that do not check the security of their public hosts and
this leaves them vulnerable to attacks from malicious agents. But, if they could have
an instant security report of the safety of their hosts once this is published, this would
warn them about the possible threats that they may encounter with the actual state of
the host. Also it can help to visualize to a non-technical profile all the vulnerabilities in

order to make better decisions.

Thttps://www.esedsl.com/

https://www.esedsl.com/

Implementation of a vulnerability analysis service of public hosts with SaaS modality

Chapter 2. Objectives and scope 3

2. Objectives and scope

The main objective of this Final Degree Project is to create a full framework to detect
vulnerabilities in public hosts and adapt the framework to work within a larger project.

To accomplice this main goal, it is mandatory to fulfil these subgoals:

» The user must be able to register a host.

» The user must be able to start a scan with a simple command.

+ The user must be able to check the status of the scan

» The user must be able to retrieve the information of the scan once it is finished
» The user must be able to make different types of scans.

» The service must be able to deliver a report about the key vulnerabilities found in

the host.
» The service must be able to save all previous reports from each host.
» The report must be understood by a manager profile.

» The report must have enough complexity to be used for a technical profile.

Implementation of a vulnerability analysis service of public hosts with SaaS modality

Chapter 3. Theoretical Framework 5

3. Theoretical Framework

3.1 Cybersecurity

Cybersecurity is the practice of protecting systems, networks, and programs from dig-
ital attacks [1]. The attacks come from malicious agents that try to get some type of
benefit from it. In order to protect from an attack, it is necessary to prepare the people
and the equipment. The preparation of the equipment can be done by assessing if

there are any vulnerabilities.
Nowadays there are multiple solutions to protect or prevent attacks from malicious

agents. Some of the solutions similar to the one that we are proposing in this final

degree project can be found in the next section.

3.2 Similar solutions

There exist different types of solutions, some need to be installed, and others are online

and ready to use.

3.2.1 Installed solutions

This solutions need to be installed in a machine in order to work.They need to be
administrated, and much more knowledge is needed in order to make them work. They

are also specialized to check vulnerabilities in all devices inside a network.

Nessus

Nessus is part of the company Tenable [2]. Its features are explaind in more detailed

in section 3.3.1

6 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Netsparker

Netsparker is an online solution owned by Invicti [3]. Some of its features are:

 Vulnerability Trend Report.

+ Technology Version Tracking.

+ Close security gaps with automated WAF rules.
* Integration into CI/CD tools.

+ Simplify Compliance.

* Unlimited Role-Based Access

3.2.2 Online Solutions

These kinds of solutions are ready to use for each user, most of them just need a target

and they are ready to check its vulnerabilities.

Intruder.io

Intruder.io [4] offers a 30 day free trial but does not offer a free version to be tested for

more than 30 days. It is able to identify:

« Common mistakes and configuration weaknesses
* Missing patches

 Application Bugs

Attack surface reduction

* Encryption weaknesses

Probely

Within its free features [5], these are some of them:

Chapter 3. Theoretical Framework 7

* Verify SSL security
+ Security Headers

+ Cookie Flags

3.3 Vulnerability Analysis Tools

After looking at some vulnerability analysis tools, it has been decided that these are

going to be the selected ones:

3.3.1 Nessus

It is an open-source network vulnerability scanner that checks computers to find vul-

nerabilities that hackers could exploit. It is able to:

» Search vulnerabilities that could allow unauthorized control or access to sensitive

data on a system
+ Scan for misconfigurations
+ Search Denials of Service vulnerabilities
» Schedule security audits
+ Simulate attacks

« Show vulnerabilities in a graphical and comprehensive way
In this example it is going to be analyzed a metasploitable2 machine:

1. Into the My Scans Folder, we select the New Scan option (Figure 3.1)
2. We select the Web Application Tests option (Figure 3.2)
3. We have to fill the fields (Figure 3.3)

4. We can start the scan with the play button (Figure 3.4)

8 Implementation of a vulnerability analysis service of public hosts with SaaS modality

5. When it is finished we will see a tick before the last modified column (Figure 3.5)

6. If we enter, we can see the results of the analysis (Figure 3.6)

7. Inside the report, the results can be ordered by severity and its score (Figure 3.7)

Figure 3.1: Scan folder and new scan option

Chapter 3. Theoretical Framework 9

-

More Dincovery

-~

Y) -

Basc Metwork Scan Adesrced Uymamee Scan Mobde Device Scan

A a

Credestialed Patch At Incel ANT Sacuricy Brpast S5ectre and Mekdoors Wanealry Ramommare

Figure 3.2: Scan templates

Figure 3.3: Configure new scan

10 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.4: Scan configured

Figure 3.5: Scan finished

Chapter 3. Theoretical Framework 11

Figure 3.6: General results of the scan

Figure 3.7: Detailed scan results

12 Implementation of a vulnerability analysis service of public hosts with SaaS modality

3.3.2 OWASP ZAP

It is an open-source web application security scanner developed by the Open Web
Application Security Project (OWASP) Foundation [6]. It is a highly recognized tool
used by a lot of security experts and maintained by them with new add-ons that can
be downloaded from the marketplace. It is written mostly in Java and it is available in

Windows, Linux and Mac OS X. Some of its features are:

* It can work as an intercepting proxy

* |tis able to perform automated scanners
* Brute force scanning

* Fuzzing

+ Port scanning

* Has an advanced SQL Injection Scanner

|t allows users to interact with APl REST

We are going to attack a vulnerable host:

1. Select option Automated Scan (Figure 3.8)
2. Enter the url of the web application that you want to test (Figure 3.9)

3. Inthe alerts section we have all the possible vulnerabilities that we can encounter

in this web application (Figure 3.10)

4. In this part, we can see all the possible vulnerabilities that the web application

can have and some information of how it has been detected (Figure 3.11)

Chapter 3. Theoretical Framework 13

Fla Edt \View Analyse Reporr Todls importr Onine Help

Standard Mode ke o » *ESEnEn dw ~ e mauee &
o5 $ y Quick Stort ¢ = Roguent = Rasponse T
Tat Welcome to OWASP ZAP
> Contexts
Oefax Cortoxt ZAP I an easy 10 use Ntegrated penetration testing 1ol for fnding vuinesabilties in webs appheations
@ Stes

¥ you are rew 1o ZAP then R s Bett ¢

STt with one of the ogtiors below

WY Ve

Mgormated Scan Manue Explore Learn More
= Matory \ Search FE Alerty Outpns r
@ © 7 FRer: CFF & Export
a Source Aeq Timestame Methoa URL Code Reason RATT Size Rewp. Bady Hgnest Alert Note Togs ~
Aerts #0 »0 #0 » 0 Prirmary Proxy, iocahost B0B0 Crret o 90 $0 0 30 Q0 M0 0 WO

Figure 3.8: Welcome page

14 Implementation of a vulnerability analysis service of public hosts with SaaS modality

o k- a4 02E - d v ~ xS m e «
¢ 2 r aack SRart v - laguest » Neosponse +
- -
- < Automated Scan
oreest
@ R This screen slows you 10 Munch an SLomated SCan aganNst an sopication - At erter £ URL Delow end press
ATk
Pleate De awire That you shouls only slTack sephcet . Dt e ce 3 o Qve: *
§ s ack 0 168 ™ P @ Sete
L adr NN speder
Ve WaX Specer wih Frefox Headess
A
Tess rted
= 1 istory \ Search M ooty Ot +
e FRrRer. OFF ¢ Export
] Soree Mg Trmesters Method y sode Neawen RTT Sie fesp. Dody Mgheet At "9 =
Aerts n0 O 0 Prienary Proxy, locaost 8080 arert o @ O‘w 2 - Vs »

Figure 3.9: Introduce url to attack

Chapter 3. Theoretical Framework 15

‘e Eot Vew Anadse Repart Tools nport Oniine Hep

Sandard Mode SHdef0sJ'ESEEoDEnTae e AXEL.Buenl @
@Stes 4 y Quikck Start = RAequest o Response 4
| Rwwiw] Meager Text Body: Text
o Corgents WITR/L,] 208 Ox
& Defaur Cortent Date: Fri, 87 Jan 2002 11:40:46 GMT
@ Stes Sarvar: Apache/2.2.8 [Ubuntu) DAV/2
. X-Powered-8y: PHP/S.2.4 - 2ubuntub. 10

Expires: Thu, 19 Now 1981 08:%2:00 OMT
Logged-In-User: ZAP
Cache-Control: public

<table yssn"hoader-seru-table”>

“tr»
«tdn<ca Hrat="Lndex php Tpageshone phe “sHone</ ar</td>
“tds
“a InGox ., phg7aox=logout “slogout«/an
«/10w
«tdr<a Nrute
indes . phw Tdoet 0gg) & - securit yEosge «JINSEEIEIIRRERINE >Togole Security</ a»</1d>
Mitstery N Search SiAens # Outper WSpdar) Athe Scan +
pe /v Cross Site Scripting (Reflected)
LR Mp 192,168 252 134 /mualdenindex. phe Tpoge = javescrpt Wl Aslert W28 1 %2 0%10

Nerts (28)
n Cross Ste Scripting (OOM Based) (4)
n Cross Ste Scrigting (Pecsistont) (J)

gk ~ Hgh
Confidence: Medum
Parameter: page

Attack Jovoscrigt alect(l)

mEy Redrect
SRERg Evidence |avascrign-slet(l)!

N Path Traversal [11)

»Remcte Fie nousion ﬁﬁcob ;9

»Remete OS5 Command ngection x

~SOL N:mm (5} w “Source Active (40012 - Cross Ske Scripting (Haflected))
Description:

A SOU Injection - MySQL (2)
” Appic ation Error Disclosure
» Direcsory Browing (6)

» Parameter Tampering (11)
™ Vunerabie 15 Lorary Ceher nfo
» XFrame-Opticns Header Not Set (64)

i Abtence of Ao CSRF Tokerd (33)

Cross-ske Scripting (XSS5) & an attack technique that involves echoing sttacker-suppled code FLo a user's Drowser
instance. A browser instance can be a stondard web browser clert, or a8 browser object embedded in & software
product such a5 the browser within Windmp, an BSS reader, or an emal clert. The code Eself Is ususlly wrkten in

Merts BS AL H N2 Primary Proxy: lecahost 8080 CQurent Scans @0 80 0 A0 @0 MO L0 %0

Figure 3.10: Results of the scan

16 Implementation of a vulnerability analysis service of public hosts with SaaS modality

o Alerts (24)
m Cross Site Scripting (DOM Based) (4)
m Cross Site Scripting (Persistent) (3)
f Cross Site Scripting (Reflected) (26)
f External Redirect
m Path Traversal (11)
fu Rernote File Inclusion
m Remote OS5 Command Injection
 S0L Injection (5)
m SOL Injection - MySQL (2)
f Application Error Disclosure
fu Directory Browsing (6)
fu Parameter Tampering (11)
fulnerable |S Library
fu X-Frame-Options Header Not Set (64)
o Absence of Anti-CSRF Tokens (33)
f1 Cookie Mo HttpOnly Flag (19)
1 Cookie without SameSite Attribute (19)
f Information Disclosure - Debug Error Message
1 Private IP Disclosure (7)
fu Server Leaks Information via "X-Powered-By" |
fuTimestamp Disclosure - Unix (428)
fu X-Content-Type-Options Header Missing (25)
f Information Disclosure - Sensitive Information
f Information Disclosure - Suspicious Comments

Figure 3.11: Detailed results of the scan

Chapter 3. Theoretical Framework 17

3.3.3 Nmap

Is a free open-source utility for network discovery and security auditing [7]. It was
released on September 1st 1997 by Gordon Lyon in the fifty-first issue of Phrack mag-
azine. A the beginning Nmap only supported Linux operating system and had fewer
functionalities than it does nowadays. Thanks to the Open Source development, this
software has grown to support more functionalities, different operating systems, and it

has become one of the world’s most popular network security scanners.

Nowadays Nmap can perform various tasks such as:

+ Searching hosts available on the network

» The OS version of the hosts

» Check which services does a host offer

» See which applications are being run on a host and its version

* Recognise which types of packets and filters/firewalls are in use

To gather all this information, Nmap sends packets to the hosts and analyses and
verifies the information of the answer. For example, in order to perform a port scan by
default, Nmap sends a TCP SYN scan which is really fast and gives information like the
port number, the state (open, closed, filtered,...) and the service that it has associated
(Figure 3.12).

18 Implementation of a vulnerability analysis service of public hosts with SaaS modality

rrady nmap -p22,113,139% scanme . nmap . org

Figure 3.12: Result of a scan to the port 22, 113 and 139. Source [8]

This TCP SYN scan starts with a TCP packet sent to a host with the SYN Flag set to 1
and the number of the port that it is going to be checked. As it is a TCP SYN request,
the sender wants to create a TCP connection with that port and the receiver has to

respond to that connection.

If the receiver responds with a SYN/ACK packet, it means that the port is open (Figure
3.13).

SYN (Request port 22 connection)

SYN/ACK (It's open, go ahead)

RST (No, forget it!)

scanme

Figure 3.13: Example of SYN request and open port. Source [8]

If the receiver responds with a RST packet, the port it is closed (Figure 3.14).

Chapter 3. Theoretical Framework 19

- RST (Sorry, port is closed) - ’

=P '
=

krad scanme

Figure 3.14: Example of SYN request and closed port. Source [8]

But if there is no respond after a few tries of connection, the port it is filtered by a firewall

or other type of protection that denies the respond to the sender request (Figure 3.15).

SYN (Request port 139 connection)

SYN (Try again. Anybody home?)

krad scanme

Figure 3.15: Example of SYN request and filtered port. Source[8]

Although a TCP SYN scan is the default option, Nmap is able to perform multiple types

of scans:

* TCP connect scans: Nmaps asks the OS to make a connection if it does not

have privileges to create a packet by itself

« UDP scans: scans for UDP ports, though take much more time because it is

necessary to wait for an answer that may not come.
« SCTP INIT scans: SCTP equivalent scan to TCP SYN.

« TCP NULL, FIN, and Xmas scans: Exploit a subtle loophole in the TCP RFC to

differentiate between open and closed ports.

* TCP ACK scans: Itis used to map firewall rule sets.

20 Implementation of a vulnerability analysis service of public hosts with SaaS modality

+ TCP Windows scans: Like the TCP ACK but using vulnerabilities from Windows

machines.
« TCP Maimon scans: The same as NULL, FIN and Xmas scans but using FIN/ACK.
+ Custom TCP scans: Allows to personalize the scanflags for advanced users.

+ SCTP COOKIE ECHO scans: More advanced SCTP scan. Takes advantage

that the drop of packets containing COOKIE ECHO chunks should be silent in
the SCTP implementation.

* |Idle scans: Uses a zombie host and does not use the address of the attacker.

* IP protocol scans: Allows to determine the IP protocols that are being used.

FTP bounce scans: Scanning ports via a remote FTP server.

To exemplify the usage of this tool, it has been used a metasploitable2 machine as a

scanned machine, and a Kali machine as the scanning machine:

1. With the command nmap [IP-Address], it is possible to make a quick scan to see

what ports and services does the machine have open(Figure 3.16).
This is a machine that provides lots of services such as FTP, SSH, HTTP, etc.
2. With the option -sV Nmap detects the versions of these services and with the -sC

option, nmap will run a default script to grab more detailed information (Figure
3.17).

Chapter 3. Theoretical Framework 21

File Actions Edit View Help

Figure 3.16: Result of scan metasploitable2

22 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.17: Result of scan metasploitable2 with services version

Chapter 3. Theoretical Framework 23

3.3.4 Metasploit

Is one of the most used open-source penetration testing frameworks and it was re-
leased in 2003 by H. D. Moore as a portable network tool using Perl [9]. In 2007 it
was rewritten in Ruby and in 2009 it was bought by Rapid7, a security company that
provides vulnerability management solutions. It has a huge amount of exploits to use.

Metasploit helps us with:

» Check vulnerabilities

+ Using exploits for those vulnerabilities
+ Setting and configuring an exploit

» Choosing and configuring a payload

« Execute the exploit

Let’s check for vulnerabilities from the previous nmap scan:

1. After we gather this information, we can go to Metasploit console and search for

possible vulnerabilities (Figure 3.18).

2. In this case, we have searched for a vulnerability in vsftpd v2.3.4, and we have

found that it exists an exploit from 2011 ranked as excellent (Figure 3.19).

3. We can search for more vulnerabilities like vnc 3.3. In this case we can find that
they exist some exploits for this protocol too, but they have a lower rank (Figure
3.20).

24 Implementation of a vulnerability analysis service of public hosts with SaaS modality

File Actions Edit View Help

~

Figure 3.18: Entry message of metasploit

fro/SWEEDE_234_backooor 2011-07-0 YSRIPD VEIRR Bockdoor Coemd

Figure 3.19: Results of vsftpd 2.3.4

Chapter 3. Theoretical Framework 25

File Actions Edit View Help

s /MRE/ real¥me _client
scanner/SHE/¥ne |
ows /MG win¥ill_http_get

Figure 3.20: Results of vnc 3.3

26 Implementation of a vulnerability analysis service of public hosts with SaaS modality

3.3.5 Sglmap

It is an open-source penetration testing tool that automates the process of detecting
and exploiting SQL injection flaws [10]. It is also able to exploit the found vulnerabilities

to look Databases and take their information.

Some of its features are:

* Full Support for MySQL, Oracle, PostgreSQL, Microsoft SQL Server, Maria DB ...

* It supports six SQL Injection techniques:

Boolean-based blind

Time-based blind

Error-based

UNION query-based

Stacked queries and out-of-band

« Can ennumerate users, password hashes, privileges, roles, databases, tables

and columns

» Automatic recognition of password hash formats and support for cracking them

using a dictionary-based attack.

We are going to attack the metasploitable2 machine, the mutillidae application:

1. Get a request with a proxy, in this case it has been used Burp Suite (Figure 3.21).
2. Save the request in a .txt to use it with sqlmap (Figure 3.22).
3. Use the request previously saved in the sqlmap -r instruction (Figure 3.23).

4. If it is injectable, there should be something like this, where it shows us which is

the database type and the types of injections that can be made (Figure 3.24).

Chapter 3. Theoretical Framework 27

By Pt e

Ousboart Targm truder Rrpeser e Oecoder Comgans Loppr farnar Froect opram U geone e

Wednw el

WITP hestory Wb Socken Sty Opram

Z Negaiatey SN

T .

POST Jeutillndee/andes sho Toeg
fost: 197.168.2 1M

User-Ageat . Mezilla
Accept testimal

S N— ¢ wa

001 Cecha 20000308 Prrefee/m.0

Sensanl on0 S heagetenie. /e 0 B

=vitw ssmesnes bl oG . phe

Figure 3.21: Intercept request with burpsuite

7 et 10 MIpUTIS) 161

Formars tvog BT Avion Open s cwrer
@

POST sectillidac/inden . pho’pagemviow: sonecsnes dlog.ohp HITP/LL
Most: 192.1

User-Agent X13; Licux 06 €4; rv:70.0) Gecko/20100001 Pirefor/78.0
Accept st /el applicaticonsahtel L3¢ 1:qe0. 9, 30830/ wabp, ¥/ qe0. 0
Accept - GVage ! en-US. en:g=0. 5
Accept-Encoding! Qiip. Sefinte
Content -Type! 2palacation/s v fora urlen
Comtent -Length: 67
Orsgan: MEp//190.168.252.14
1682592 . 1%/t S t2 eruder t Blzg.phe

Coskie: shavhint g

o 15 Repe ster !
pprade-Insecure-Requests: 3 v

Send s Sequerer
athetsadeinbviev soecoses -blog phe-swba

Send 18 Compatet

Ergagermert Sacls [Pea version ooly|
Charege request mt
Change body ercadg

CopyUts

Copy 38 curl somemand

Copytatie

Paste fhom (e

S hem

Do T interon

Oa wtercept

VL evcode s you e

Foste .y
Meisage e S et st on

PrOwy 1M 10N doC e rEaton

Figure 3.22: Save request in burpsuite

28 Implementation of a vulnerability analysis service of public hosts with SaaS modality

File Actions Edit View Help

Figure 3.23: Execute sqlmap with saved request

1 re ing bac er IBMS ysql
] [INFO) testing connection to the target URL

ed the following injection point(s) from stored session:

WHERE or HA
1«9963 AND Q - - t-buttonsView Blog Entries

lause (FLOOR)
a’zl, T (ELT(1579«1579

7 UNION SELECT 5369)a

12 AND time-based blind (
" AND (SELECT 1267 FROM (

] the back-end DEMS is MySQL
5Ys i: Linux Ubu Hardy Heron)
y: PHP S5.2.

Figure 3.24: Results of sqimap

3.3.6 WPScan

The WPScan CLlI tool is a free, for non-commercial use, black box WordPress security
scanner written for security professionals and blog maintainers to test the security of

their sites [11].

Chapter 3. Theoretical Framework

It checks for:

* WordPress version installed and associated vulnerabilities

Which plugins and themes are installed and if they are vulnerable

» Username enumeration

Users with weak password via password brute forcing

Backed up and public accessible wp-config.php files

An example of the usage of this tool can be seen below (Figure 3.25).

root@kali:/home/kali# wpscan —url pentest.id —enumerate tt

\ N\ s
NEXA |___ | (_,__ e
vV Vv . \.._
XA (|
vV Vv s
WordPress Security Scanner by the WPScan Team
Version 3.7.6

Sponsored by Automattic - https://automattic.com/
@_WPScan_, @ethicalhack3r, @erwan_lr, afirefart

] URL: http://pentest.id/
] Started: Fri May 29 10:48:59 2020

Interesting Finding(s)

] http://pentest.id/

Interesting Entry: Server: Apache
Found By: Headers (Passive Detection)
Confidence: 100%

http://pentest.id/robots.txt

Interesting Entries:

- /wp-admin/

- /wp-admin/admin-ajax.php

Found By: Robots Txt (Aggressive Detection)
Confidence: 100%

] http://pentest.id/xmlrpc.php
Found By: Link Tag (Passive Detection)
Confidence: 30%
References:
- http://codex.wordpress.org/XML-RPC_Pingback_API
- https://we.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_ghost_scanner
- https://www.rapid7.com/db/modules/auxiliary/dos/http/wordpress_xmlrpc_dos
- https://wem.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_xmlrpc_login
- https://wwmw.rapid7.com/db/modules/auxiliary/scanner/http/wordpress_pingback_access

] http://pentest.id/readme.html
Found By: Direct Access (Aggressive Detection)
Confidence: 100%

] http://pentest.id/wp-cron.php
| Found By: Direct Access (Aggressive Detection)

Figure 3.25: Results of wpscan

30 Implementation of a vulnerability analysis service of public hosts with SaaS modality

3.3.7 Joomscan

JoomScan is an open-source project, developed with the aim of automating the task
of vulnerability detection and reliability assurance in Joomla CMS deployments[12]. It
was released in 2018 by OWASP (Open Web Application Security Project) and it is

implemented in Perl.

It is only capable of detecting already known vulnerabilities and detect many miscon-

figurations that may led to vulnerable situations.Some of its features are:

* Version enumeration

* Vulnerability enumeration

« Components enumeration

« Components vulnerability enumeration
+ Firewall detection

» Finding common log files

» Finding common backup files

Even if it has all this features, it has its limitations:

» The database still lacks of unknown exploit checks
 Lacks IDS (Intrusion Detection System) evasion bypass
+ Lacks sophisticated fuzzing

« Itis not a full fledged SQL Injection tool

To perform a scan of a Joomla website, the scanner create a series of GET Requests
to identify possible vulnerabilities. For example, to get the Joomla version that is being
used, a request with the url:

https://[HOST]/administrator/manifests/files/joomla.xml is sent and the returned XML

Chapter 3. Theoretical Framework 31

file contains the version among other things. If the asked resource does exist, Joom-
scan checks for a possible vulnerability, depending of the type, it may require the usage
of a sample exploit string, but if the exploit string is not available, it works out the vul-

nerability state with version deduced.

Using this tool does not require lots of arguments, with just the url, it performs a basic
scan that checks all the vulnerabilities previously mentioned. In the next example, a

Joomla website is being scaned with a kali machine:

1. To check a web application, we have to introduce the parameter -u to and its url

(Figure 3.26).

2. After that, it should appear a report from the scan. As we can see it shows
information about the joomla version, which are the directories that we can find
... (Figure 3.27).

3. With the -ec option we can enunmerate all the components that are being used

(Figure 3.28).

4. If there is any vulnerability it should appear.

32 Implementation of a vulnerability analysis service of public hosts with SaaS modality

File Actions Edit View Help

Figure 3.26: joomscan command to attack host

Chapter 3. Theoretical Framework 33

Figure 3.27: Results of joomscan

34 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.28: Enumeration of the components

Chapter 3. Theoretical Framework 35

3.3.8 TLSSLed

TLSSLed is a Linux shell script whose purpose is to evaluate the security of a target
SSL/TLS (HTTPS) web server implementation [13]. Some of the tests that it performs

are:

» Check which versions of SSL support

» Check which versions of TLS support

* NULL cipher

» The strength of the cipher method based on key length
+ The availability of strong ciphers

+ If the digital certificate is MD5 signed

» Renegotiation capabilities of the server
We are going to check the SSL/TLS from our joomla server:

1. You run the command tissled [IP address] [Port] (Figure 3.29).

' 192.168.56.1 443

Figure 3.29: TLSSled command on host 192.168.56.1 443

2. Once the command has finished, we have the results in different files (Figure
3.30).

Figure 3.30: Files where the results are stored

3. For example, if we open the ssiscan file, we can see which TLS versions are

enabled and if there are yellow, it might be a problem (Figure 3.31).

36 Implementation of a vulnerability analysis service of public hosts with SaaS modality

~/TLSSLed_1.3_192.168.56.1_443_20220112-145530
sslscan 192.168.56., 443 20220112-145530.10¢
version:

OpenSSL 1.1.1l-dev xx XXX xxxXx

on port using SNI name

enabled

Figure 3.31: Result of ssl scan
3.4 Web Technologies

This section details the possible web technologies and determines which is the best

for the project.

3.4.1 Front-end

The Front-end is the part of the web application users interact to make requests and
receive data. This is the most visible part of the website and there are different solu-

tions:

« HTML: or HyperText Markup Language, it is the basic of the web. Defines the

structure and the content of all the web.

* CSS: or Cascading Style Sheets, it is used to describe how all the elements of

the page are rendered.

« JavaScript: is a programming language very popular in the web environment be-
cause it is used as a scripting language. It is a prototype-based, multi-paradigm,
single-threaded, dynamic language, supporting, imperative, and declarative styles.

JavaScript has very powerful libraries and Frameworks that can help to build dy-

Chapter 3. Theoretical Framework 37

namic front-end:

- Vue,js: is a JavaScript framework for building user interfaces. The two
main features of Vue.js are Declarative Rendering, which allows changing
the HTML state depending on the JavaScript state, and Reactivity, meaning

that Vue.js can track the JavaScript state to efficiently update the DOM.

— React.js: is a JavaScript library developed by Facebook Inc. As Vue.js, it
also uses a Declarative Rendering and Reactivity. A peculiar thing about
React is that uses a language called JSX for the rendering. This language

is a mix of HTML and JavaScript.

— Angular: is a JavaScript framework developed by Google. It has a similar
functionality as Vue.js and React, but instead of working with a virtual DOM,

Angular uses the real DOM. It is also known for a pronounced learning curve.

The front-end of the application uses HTML, CSS, JavaScript and Vue.js. After compar-
ing Vue.js, React.js and Angular, the framework that better suits the project is Vue.js.

As it can be seen in figure3.32 and in figure 3.33 Angular is not well regarded in the

community, excluding it from the viable options.

Figure 3.32: Poll from stateofjs [14]

38 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Positive/Negative Split et

Figure 3.33: Poll from stateofjs [14]

This leaves the contest to Vue.js and React.js. Both are flexible and scalable tools.
But Vue.js uses plain HTML which is easier to migrate than JSX, being the first more
versatile. Also in the next figure (Figure 3.34), it can be seen that Vue.js performs a

little better in general and decanting the balance in favour of Vue.js.

Chapter 3. Theoretical Framework 39

Vue and React Performance Comparison

e Reactje A 4 X:?.je

(ms)

Create rows
Duration for creating 1000 rows after 187.6 £ 4.3 169.2 = 36
the page loaded

Replace allrows
Duration for updating all 1000 rows of 165270
the table (with 6 warmup iterations)

Partial update

Time to update the text of every 10th
row (with 6 warmup iterations) fora
table with 10k rows

Selectrow
Duration to highlight arow in

response to a click on the row (with &
warmup iterations)

Swap rows

Time to swap 2rows on a IK table V6= 4.7 218245
(with 6 warmup iterations)

Remove row

Duration to remove a row (with & 515+20 52518

warmup iterations)

Create many rows
Duration to create 10,000 rows

Append rows to large table
Duration for adding 1000 rows on a 2n8=99
table of 10,000 rows

Clearrows
Duration to clear the table filled with 2244 £ 6.0 2409 = 14
10.000 rows

Startup time
Time for loading, parsing and 49407 484 =24
starting up

Figure 3.34: Performance comparison. Source [15]

3.4.2 Back-end

The back-end responses to what the front end has initiated [16]. It is the most compu-

tational part of a web page, and some of the most used languages are:

* Python: is a multiparadigm, general-purpose, interpreted, high-level program-
ming language [17]. It is useful to process text, which is necessary in this project
because some of the previous mentioned vulnerability analysis tools return out-

puts in raw text.

40 Implementation of a vulnerability analysis service of public hosts with SaaS modality

* PHP: or Hypertext Preprocessor, it is one of the top ten most popular program-
ming languages as it can be seen in figure 3.35. Also the Laravel framework pro-

vides easy to build web applications. It helps with the connection to the database,

session based authentication and more [18].

Figure 3.35: Poll from stackoverflow[19]

These are the two languages that are used in the project because ESED works with

them.

Chapter 4. Methodology 41

4. Methodology

In order to accomplish the objectives that have been described earlier, the principles of
the Agile Manifesto are taken into account. This means that there are meetings twice
a month with both, the academic and the business tutor. The changes are welcome,

and the top priority is to deliver value in the moment rather than a work in progress.

To follow these guidelines, the project is divided into different stages and with each
stage having its own tasks:
1. Analysis and Investigation

(a) Investigate possible solutions

(b) Analyse which one of the possible solutions is the best for the project
2. Design and architecture

(a) Design the implementation

(b) Take into account the requirements
3. Implementation

(a) Develop the solution
4. Testing the implementation

(a) Testthe requirements

(b) Testif the users can use the application without help
5. Evaluation of the results

(a) Check if the results align with the expected output
(b) Evaluate what has gone wrong
(c) Investigate ways to improve this last iteration

(d) Schedule the next iteration

42 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Even though the stages and tasks are written in a sequence, this does not mean that

they are followed just one time. They are a cycle of N iterations.

To make the evaluation of the project, it is important to notice that two different ap-
proaches are used, the first one in the academic part, and the second one in the

business part:

1. Academic: The meetings take place two Mondays per month and, if it is possible,
they are face-to-face. If it is not possible to be in the same room with the tutor,

the meeting takes place in Zoom. Mail is used to be in contact.

The text editor platform used is Overleaf and it is where the tutor makes the cor-

rections of the thesis. In this part of the project, the references are very important.

2. Business: There are meetings on Fridays twice a month. These meetings take
place in Google Meet and have a duration of half an hour. Doubts and requests

can be done in Google chat. The projectis planned in the web application clickup.

For this part of the project is very important to test if the implementations perform

as expected.

Chapter 5. Development 43

5. Development

5.1 Definition of the functional and technological re-

guirements

In order to be a satisfactory service, it has to accomplish different functional and tech-

nological requirements.

5.1.1 Functional Requirements

» The service must be available 24x7 online
1. Check the service status continuously
* The service must be able to register and manage hosts

1. Register host
2. Check that the host is registered
3. Remove host

4. Check if the host is removed
* The service must be able to run a vulnerability analysis

1. Define the attacked host
2. Define the type of scan

3. Check if the scan has started
» The service must be able to show the progress of an analysis

1. Ask for the progress of a scan
2. Return if the scan is in progress

3. Return if the scan is finished

44 Implementation of a vulnerability analysis service of public hosts with SaaS modality

4. Return if the scan has failed
» The service must be able to generate and show a report of the analysis

1. Ask for the results of a scan

2. Return the results of the scan
» The service must be able to perform multiple scans on the same host

1. Define the attacked host
2. Define the type of scan

3. Check if the scan has started

5.1.2 Technological Requirements

* The service must be hosted online in a private machine

1. The host can only be accessible to a specific user

2. Check if the host functions as expected
* The service must be able to save more than one host

1. Register one host
2. Register a second host

3. Check if both hosts exist

The service must be able to make a vulnerability analysis

1. Define a host
2. Define the type of scan

3. Check if the scan has started

The service must be able to generate a report from an analysis

1. Initialize a vulnerability analysis on a host

Chapter 5. Development 45

2. Check if it shows the results as a report
» The service must be able to store all the reports from one host

1. Initialize a vulnerability analysis on a host

2. Check if the report is stored in the database

5.2 Development Process

5.2.1 Design of the web application

The web application is divided in four parts: the front end, the back end, the scan

server and the database.

Usar's request—m| F—Reguest scan—»
Front End Back End Scan server
lg——Responses —Results of scan—

Save data
Retrieve data

DataBase

Figure 5.1: Diagram of the application

Front End

This part of the application is the visible part for the final user. From this part, the user

is able to:

* Register to the application

46 Implementation of a vulnerability analysis service of public hosts with SaaS modality

* Login
* Do ascan

» See the results of the scan

Back End

All the users’ requests are processed in this part of the application. It is in charge of:

* Register a host
» Send a scan request to the scan server
» Process the results of the scan

» Save the results of the scan in the database

Scan server

The scan server is where all the attack tools are used. The back-end sends a request
with all the parameters needed to create a scan, this server processes it and sends
the results in a raw JSON. This server is able to use different types of tools. Nes-
sus, Metasploit, and Sglmap could not enter due to lack of time. There are five tools

available:

* Nmap

« OWASP ZAP
+ Traceroute

« TLSSLed

+ Joomscan

« WPScan

Chapter 5. Development 47

Database

This part is in charge of saving all the information relative to:

* Hosts’ information
* Failed scans
* Results of the scans

* Raw data of the scans

5.2.2 Code Tools Integration

All the tools used for this project are commonly used in a manual way, the user intro-
duces the commands necessary to perform an action and the tool returns something,
generally text, that the user can understand. The objective for this part of the project is
to introduce the commands and interpret the data with a script. This allows to automa-

tize and control the scans from the back-end.

To be able to automatize the different tools, there must be a first phase of communica-
tion where it is defined what the tools must do, and a second phase of gathering the
results. There are tools that the first and second phase is performed with a simple API
provided by the same tool, but there are others that must be executed with commands,

and the results gathered also from the command prompt.

In the next subsections, it is detailed the process followed for each of the different tools

available now in the project.

Nmap

Nmap does not have an API to make scans and gather results, but some people have
made libraries to integrate Nmap with Python. The library used for this project is called

python-nmap [20] and it allows the user to perform scans with simple python commands

48 Implementation of a vulnerability analysis service of public hosts with SaaS modality

and receive the result in an array.

To create a scan with this library it is necessary to import the library, invoke the method

PortScanner() and invoke the method scan() (Figure 5.2).

import nmap

>> nm = nmap.PortScanner()
> nm.scan('127.0.0.1', '22-443'

Figure 5.2: Import and usage of python-nmap. Source [20]

The scan method can accept arguments like the IP of the host, the ports to be scanned,
and the arguments to be used among others. This function executes a Nmap command
and waits for the results. When Nmap has ended the scan, the results can be retrieved

from an array that python-nmap creates (Figure 5.3).

> for host in nm.all_hosts():

L e e S L e e e !
print('Host : %s (%s)' t].hostname())
print('State : %s' % nm[hc
for proto in nm[host

print(f————"- ")

print('Protocol : %s' proto

Lport = nm[host][proto].keys(

Lport.sort(

for port in lport:

print ('port : %s\tstate : %s' % (port, nm[host][proto][port]['state’

Host : 127 1 c o
State up

Protocol : tcp

port : 22 i open
port : 25 : open
port 80 : open
port 111 . open
port 443 : open

Figure 5.3: Example of result of a scan. Source [20]

In the actual state of the project, this script is able to create a scan with the IP, the ports,

and the arguments of a Nmap normal scan and return the results in a JSON response.

Chapter 5. Development 49

OWASP ZAP

The OWASP ZAP software has an option to enable an APl mode [21] Figure 5.4. With
this API it is possible to ask the same things as if it was used manually. It also has a

library for Python [22] that allows to make the API calls from it.

S & | API @
Active Scan 7| Enabled
Active Scan Input Ve
AJAX Spider v 'Web Ul Enabled
Alerts Secure Only
Anti-CSRF Tokens APl Key: | |]
Generate Random ...
Breakpoints Addresses permitted to use the AP|
Call Home Enabled Regex Address B Add..
Check For Updates 7 Modify...
Client Certificate 7 o
N F _l L L® =)
Connection —
Database 2
Dlsplay Enable All
Dynarnic S5L Certific Disable All
Encode/Decode - -
Extensions Remove Without Confirmation
Forced Browse * The following options should only be used for testing as they may
Form Handler malke it easier to attack ZAP
Fuzzer Disable the API key
Global Alert Filters : :
Global Exclude URL Eo not requnte f:\n AP| key florjslfe operati...
GraphQL eport permission errors wvia
HTTP Sessions Report error details via API
HUD Autofill APl key in the APIUI
Jvm Enable |[SONP
I i arA
Reset to Factory Defaults Cancel oK

Figure 5.4: Window to activate the API

50 Implementation of a vulnerability analysis service of public hosts with SaaS modality

The possible requests that can be done to the scan server can perform spider attacks
to index a targeted web application and perform active scans to discover possible vul-

nerabilities.

Traceroute

This tool was implemented in the last place and asked for ESED. It is capable to know
the route that the user follows to reach the destination address. For this tool, there are
no APIs, libraries, or saves the result in a .txt. To gather the information that this tool
gives, it has been necessary to analyze the output of the machine. The subprocess
module [23] can save the output when the capture_output is set to True. In the Figure

5.5 we can see an example of the execution of this tool.

process = subprocess.run{['traceroute', '-I', url], capture_output=True)

output = process.stdout.decode("utf-8").splitlines()

Figure 5.5: Example of capturing the output of traceroute

TLSSLed

This tool does not have any API or parser to gather the output. TLSSLed creates a
folder with the results of the scan in plain text. To gather the results, a script of Pyhton
deletes the previous scan and then processes the results which are saved as JSON
data. To know which one is the file that contains the output, first, the output is captured
with the subprocess modules, as seen earlier, and then the script searches the file and

the path (Figure 5.6).

Chapter 5. Development

51

directory =
for ®x in output:
[.] Dutput directory:™ in x:

directory = x.replace(" [-] Output directory: ",

n n wmy

directory = directory.replace(™ ...",)

break

output_file = "sslscan"™ + directory.replace("TL55Led_1.3", "") + ".log"

path = "./" + directory + "/™ + output_file

Figure 5.6: The script finds where is the output and saves the path to use it later

Joomscan

Joomscan functions similar to TLSSLed. It creates an output that is saved in a folder.

To convert the output to a JSON format, a Python script analyses the different rows

of the output.txt. The output of the scan is delimited by marks that make it easier to

process (Figure 5.7).

[+]1 FirelWall Detector
[++] Firewall not detected

[+]1 Detecting Joomla Version
[++] Joomla 4.8.5

[+]1 Core Joomla Vulnerability

[++] Target Joomla core is not wulnerable

[+] Checking Directory Listing

[++] directory has directory listing :
http://192.168.56.1/joomla/administrator/components
http://192.168.56.1/joomla/administrator/modules

http://192.168.56.1/joomla/administrator/templates

http://192.168.56.1/joomla/images/banners

Figure 5.7: The [+] signs define what are they checking, and the [++] signs are the

results of that check

52 Implementation of a vulnerability analysis service of public hosts with SaaS modality

WPScan

To this tool there is a library called wpscan out_parse[24]. This library can be used as
a client or as a Python library. This project uses it as a library. This parser returns the

results as a JSON, it shows the info, warnings, and alert messages (Figure 5.8).

‘infos':[],
‘warnings':[],
‘alerts':[],
‘summary ' :{
'table':None,

'line’':'WPScan result summary: alerts={}, warnings={}, infos={}, error={}'

‘error':None

1
J

Figure 5.8: Structure that returns the wpscan_out_parse library

Chapter 5. Development 53

5.2.3 Code Front-end

This part of the project was abandoned because ESED does not need the front-end to
use the service. They use the service with the API. The developed part uses HTML,

CSS, JavaScript and Vue. It consists of different views:

A welcome view (Figure 5.9), where the user can select if he wants to go to the login

page or the register page.

Welcome

Figure 5.9: Welcome page

A register page (Figure 5.10), to register the personal information of the user.

Login

MName
John Doe
Email
john@mail.com
Password
12345678
Password Confirmation

12345678

Figure 5.10: Register page

54 Implementation of a vulnerability analysis service of public hosts with SaaS modality

The login page (Figure 5.11), the normal entrance point of a known user.

Login

Email
john@mail.com
Password

12345678

Figure 5.11: Login page

The main page (Figure 5.12) where the user can find all the hosts created by him.

This it the main page

All hosts
Name: Host test
Url: hitp:/Awww.192.168.48.137.com
Owner: 2
View Host
Add new host

Figure 5.12: Main page

Chapter 5. Development

A host creation page (Figure 5.13), to create all the hosts of the user.

Add New Host

Name
Host 1
Host Url
http:fwww.192.168.48.137.com
Description

This is a test host

Create Host

Figure 5.13: Create host page

A detailed view of a host (Figure 5.14), to see all the information about it.

Name: Host test

Url: http:/mwww.192.168.48.137.com
Description: This is a test host

Created at: 2022-04-20T16:18:45.000000Z
Owner: 2

Scan Host

Figure 5.14: Host in detail

56 Implementation of a vulnerability analysis service of public hosts with SaaS modality

And the scan host page (Figure 5.15), where the user can decide to make a fast scan,

a normal scan or a complete scan.

Create new scan for 3

~| Create scan

Select a type of scan
Quick scan

Mormal scan
Complete scan

Figure 5.15: Create scan page

The user does not know the details of how this scan is performed, he can just see the

results.

The result of the scan is returned in JSON, but it is explained in the next section.

5.2.4 Code Back-end

The back-end is programmed with PHP and the help of the Laravel framework. It is the
core of the application and is where all the requests are processed. The process that

takes place when a scan is requested follows the next path (Figure5.16):

1. The user sends a scan request

2. The scan launcher uses one of the three types of scanner classes to start the

scan
3. The scan launcher informs that the scan has started successfully

4. The scanner class creates the jobs required to make the scan

Chapter 5. Development

57

5. Each job is executed and saves the result to the database

6. Once all the jobs have finished, the results of each one of them is retrieved and

analysed giving to each scan a score that is saved in the database

hJ

ScanLauncher

h J

h J

h J

QuickScan

MNormalScan

CompleteScan

Scan server

Create the necessary

jobrs to perform the scan——

[€—Ask for 3 scam—
—Return result of the scan»

Jobs

—Saves result—» Database

h 4

A

Retrieves the information of the result and saves the analyzed data

Analyzer

Figure 5.16: Diagram of the scan back end

58 Implementation of a vulnerability analysis service of public hosts with SaaS modality

API

The scan request is done with an API. The endpoints of the API are:

* /apiltargets

— method: GET
— description: Returns a list of all the hosts

— returns:
* /apiltargets

— method: POST
— description: Adds a new target
— body:

* url : String — mandatory

* /apiltargets/{target_id}

— method: DELETE
— description: Deletes the target of the parameter target. id
— parameter:

* target.id : Integer — mandatory

* /api/scans

— method: POST
— description: Starts an scan
— body:

* target.id : Integer — mandatory

» »

+ type : {"fast”, "norma

complete”} — mandatory

* /api/scans/{scan_id}

Chapter 5. Development 59

— method: GET
— description: Returns the scan with the same scan_id
— parameter:

* scan.id : Integer — mandatory

* /api/scans/{scan _id }/results

— method: GET

— description: Returns the results of the scan with the same scan_id
— body:

* scan.id : Integer — mandatory

The results of the scans are returned in an array. Each element of the array is another
array that contains a title, description, remediation, and the severity of the problem

(Figure 5.17).

=
"title" :"TLS Fallbac
"description”
"remediation" :"Activate TLS Fallback SCSV
"severity":3

SCSV 1s not active, malicious agents can use older versions of ssl to exploit vulnerabilities.”

Figure 5.17: Example of result

5.2.5 Scan Server

The scan server is a Kali machine that contains the tools and scripts needed to perform
the scans. The communication with the back-end is done thanks to an API programmed

in Python that has seven endpoints:

* /nmap

— method: POST

60 Implementation of a vulnerability analysis service of public hosts with SaaS modality

— body:

+ url : String — mandatory
* ports : Integer — optional

* parameters : String — optional

* /zap/spider

— method: POST
— body:

= url : String — mandatory

* maxchildren : Integer — optional
* recurse : Boolean — optional

* contextname : String — optional

* subtreeonly : String — optional

* /zap/ascan

— method: POST
— body:

* url : String — mandatory

* recurse : Boolean — optional

* inscopeonly : Boolean — optional

* scanpolicyname : String — optional
* method : String — optional

* postdata : String — optional

* contextid : String — optional

 /tIssled
— method: POST
— body:

= url : String — mandatory

Chapter 5. Development 61

* port : Integer — mandatory

» /joomscan

- method: POST
— body:
* url : String — mandatory

* /lwpscan

- method: POST
— body:
* url : String — mandatory

* traceroute

— method: POST
— body:

* url : String — mandatory

Each of the different endpoints calls to a function that executes the tool script and

returns the result as a JSSON.

At the beginning of the project, this Kali was a virtual machine with a GUI and some
tools that were not required. Esed requested to changethe Kali machine from a virtual
image to a Docker container. This change has allowed us to just select the tools that

we need for the scans and has also allowed us to gain in performance.

5.2.6 Database

The database (Figure 5.18) is a MySQL database. It is generated automatically and
controlled with Laravel. To create a new table, it is necessary to create first a model
class that contains the attributes. Once the model class is created, it should appear a

create migration file that contains the definition of the database.

62 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Hosts
Users
id
id
} & name
name
url
mail
user_id
x
Scans
id
host_id
NmapScans FapScans
id id
result result
scan_id scan_id

Figure 5.18: Diagram of the database

At the moment there is no need to use a non-relational database because the volume
of data is small, but in the future, it may be required to save part of the data in a

MongoDB database.

Chapter 5. Development

63

64 Implementation of a vulnerability analysis service of public hosts with SaaS modality

6. Conclusions

In this final degree project, we have developed a service to detect vulnerabilities in
public hosts. The service is now running on an Ubuntu machine and is being used by
ESED as another provider. From the technical part, the project fulfils the goals defined

at the start of this document.

Even though it has not been possible to implement all the tools and features that we
would like, the project has a solid base that allows us to add more tools and features
with ease. To implement or change any of the tools, there is a predefined way that
helps the developer to focus on the details of the tool, instead of worrying about how to

implement it into the system.

6.1 Difficulties

The first difficulty that we have encountered in this project has been the need of learn-
ing how to use the different tools for scanning vulnerabilities. Each one of the tools
works in a completely different way. To implement them into this service, we have had
to learn to use new specific Python libraries, and specific APIs or extract the results

from the output in plain text.

The second major difficulty has been learning to use PHP from scratch and using Lar-
avel. PHP is a language that we have not seen in the degree, and even though it is
similar to others, it has some peculiarities which make it unique. On the other hand,
Laravel is a framework to work with PHP that has a specific way of working. Once the
developer is used to working with Laravel, it is fast and efficient, but during the process
of learning we have found some situations that seemed logical, but Laravel would not

permit.

The last difficulty that we have struggled with it has been Docker. At the start of the

Chapter 6. Conclusions 65

project, we did not know that we were going to use this technology, but at the start of
May, ESED proposed to use this technology to host the scan server. It has not been
one of the most difficult parts of the project, but it has forced us to move the schedule

and adapt to the new situation.

6.2 Future investigations

This project will probably continue to develop with ESED. Some of the improvements

that they could do are:

» Add more scanning tools to contrast the information.
+ Add different tools to check other types of vulnerabilities.

» Change some of the tools like OWASP ZAP for others that do not have such a

big impact on the performance of the machine.
» Write more detailed descriptions of the results that the different scans give.

+ Adapt the code to use more than one scan server at the same time.

These are the future investigations that we propose from an academic perspective, but
this project is still a service that will be used by ESED. In the end, they will know which
are the lacking parts of the project, and which are the improvements that the project

needs.

6.3 Personal reflections

This project has allowed me to investigate and learn about the cybersecurity field,
which we have not seen in the degree. It also has given me the opportunity to apply
and practice concepts seen in class like APls, different frameworks, and virtualization

among others.

66 Implementation of a vulnerability analysis service of public hosts with SaaS modality

As seen earlier in the future improvements section, there are still things that could be
done to continue with this project. But time is finite and there is always something that
can be improved. The overall feeling of the project is that expectations have been met,

and it has been a productive investment of time.

Personally, | have enjoyed making this final degree project. | think it has been an oppor-
tunity to learn a lot about cybersecurity, virtualization with Docker, web development,

and meet new people that work in the same field that | want to work in the future.

Chapter 7. Bibliography 67

7. Bibliography

[1]

[2]

[3]
[4]

[5]

[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

What is cybersecurity? - cisco. https://www.cisco.com/c/en/us/products/

security/what-is-cybersecurity.html.

Descargue la evaluacion de vulnerabilidades nessus — tenable®. https://

es-la.tenable.com/products/nessus.
Invicti — web application security for enterprise. https://www.invicti.com/.
Intruder — an effortless vulnerability scanner. https://www.intruder.io/.

What is the free plan? — probely help center. https://help.probely.com/en/
articles/1974121-what-is-the-free-plan.

Owasp zap. https://www.zaproxy.org/.
Nmap: the network mapper - free security scanner. https://nmap.org/.

Tcp syn (stealth) scan (-ss) — nmap network scanning. https://nmap.org/book/

synscan.html.

Metasploit — penetration testing software, pen testing security — metasploit.

https://www.metasploit.com/.

sglmap: automatic sqgl injection and database takeover tool. https://sqlmap.

org/.

Wpscan wordpress security scanner. https://wpscan.com/

wordpress-security-scanner.

Owasp/joomscan: Owasp joomla vulnerability scanner project. https://github.

com/OWASP/joomscan.
tissled — kali linux tools. https://www.kali.org/tools/tlssled/.

State of js 2020: Front-end frameworks. https://2020.stateofjs.com/en-US/

technologies/front-end-frameworks/.

https://www.cisco.com/c/en/us/products/security/what-is-cybersecurity.html
https://www.cisco.com/c/en/us/products/security/what-is-cybersecurity.html
https://es-la.tenable.com/products/nessus
https://es-la.tenable.com/products/nessus
https://www.invicti.com/
https://www.intruder.io/
https://help.probely.com/en/articles/1974121-what-is-the-free-plan
https://help.probely.com/en/articles/1974121-what-is-the-free-plan
https://www.zaproxy.org/
https://nmap.org/
https://nmap.org/book/synscan.html
https://nmap.org/book/synscan.html
https://www.metasploit.com/
https://sqlmap.org/
https://sqlmap.org/
https://wpscan.com/wordpress-security-scanner
https://wpscan.com/wordpress-security-scanner
https://github.com/OWASP/joomscan
https://github.com/OWASP/joomscan
https://www.kali.org/tools/tlssled/
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/

68

Implementation of a vulnerability analysis service of public hosts with SaaS modality

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Vue vs react: What is the best javascript framework in 20227 — codica. https:

//www.codica.com/blog/react-vs-vue/,.

What is a back end system? - definition from techopedia. https://www.

techopedia.com/definition/1405/back-end-system.

What is python? - definition from techopedia.

https://www.techopedia.com/definition/3533/python.
Laravel - the php framework for web artisans. https://laravel.com/.

Stack overflow developer survey 2021. https://insights.stackoverflow.com/

survey/2021#technology-most-popular-technologies.

python-nmap - pypi. https://pypi.org/project/python-nmap/.

Introduction - api reference. https://www.zaproxy.org/docs/api/

#introduction.

python-owasp-zap-v2.4 . pypi. https://pypi.org/project/
python-owasp-zap-v2.4/.

subprocess — subprocess management — python 3.10.5 documentation. https:

//docs.python.org/3/library/subprocess.html.

tristanlatr/wpscan_out_parse: Python parser for wpscan output files (json and cli).

https://github.com/tristanlatr/wpscan_out_parse.

https://www.codica.com/blog/react-vs-vue/
https://www.codica.com/blog/react-vs-vue/
https://www.techopedia.com/definition/1405/back-end-system
https://www.techopedia.com/definition/1405/back-end-system
http://www.techopedia.com/definition/3533/python
https://laravel.com/
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://pypi.org/project/python-nmap/
https://www.zaproxy.org/docs/api/#introduction
https://www.zaproxy.org/docs/api/#introduction
https://pypi.org/project/python-owasp-zap-v2.4/
https://pypi.org/project/python-owasp-zap-v2.4/
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://github.com/tristanlatr/wpscan_out_parse

	Grau en Enginyeria Informa`tica de Gestio´ i Sistemes d’Informacio´
	Thesis
	Abstract
	Resum
	Resumen
	Table of Contents
	List of Figures
	1. Introduction
	2. Objectives and scope
	3. Theoretical Framework
	3.1 Cybersecurity
	3.2 Similar solutions
	3.2.1 Installed solutions
	Nessus
	Netsparker

	3.2.2 Online Solutions
	Intruder.io
	Probely

	3.3 Vulnerability Analysis Tools
	3.3.1 Nessus
	3.3.2 OWASP ZAP
	3.3.3 Nmap
	3.3.4 Metasploit
	3.3.5 Sqlmap
	3.3.6 WPScan
	3.3.7 Joomscan
	3.3.8 TLSSLed

	3.4 Web Technologies
	3.4.1 Front-end
	3.4.2 Back-end

	4. Methodology
	5. Development
	5.1 Definition of the functional and technological re- quirements
	5.1.1 Functional Requirements
	5.1.2 Technological Requirements

	5.2 Development Process
	5.2.1 Design of the web application
	Front End
	Back End
	Scan server
	Database

	5.2.2 Code Tools Integration
	Nmap
	OWASP ZAP
	Traceroute
	TLSSLed
	Joomscan
	WPScan

	5.2.3 Code Front-end
	5.2.4 Code Back-end
	API
	• /api/targets
	• /api/targets (1)
	• /api/targets/{target id}
	• /api/scans
	• /api/scans/{scan id}
	• /api/scans/{scan id}/results

	5.2.5 Scan Server
	• /nmap
	• /zap/spider
	• /zap/ascan
	• /tlssled
	• /joomscan
	• /wpscan
	• traceroute

	5.2.6 Database

	6. Conclusions
	6.1 Difficulties
	6.2 Future investigations
	6.3 Personal reflections
	7. Bibliography

