

Grau en Enginyeria Informàtica de Gestió i Sistemes d’Informació

IMPLEMENTATION OF A VULNERABILITY ANALYSIS SERVICE OF

PUBLIC HOSTS WITH SAAS MODALITY

Thesis

ALEJANDRO COSTA RUEDA

TUTOR: LÉ ONARD JANER-GARCIA

2021-2022

Abstract

Today almost all companies base their business models on web applications and

online services. These services are public to everyone, including malicious agents

that can attack these business models. Many of these companies do not have the

knowledge, time or resources to analyze if their service is free of possible attacks.

With this project, we try to create a tool that can help these companies to know

the possible dangers and attacks to which their service is open, by analyzing the

vulnerabilities that the host may have.

Resum

Actualment gairebé totes les empreses basen els seus models de negoci en aplica-

cions web i serveis en lı́nia. Aquests serveis són públics per a tothom, inclosos els

agents maliciosos que poden atacar aquests models de negoci. Moltes d’aquestes

empreses no disposen del coneixement, del temps o dels recursos per analitzar si

el seu servei està lliure de possibles atacs. Amb aquest projecte intentem crear

una eina que pugui ajudar a aquestes empreses a conèixer els possibles perills i

atacs als quals està

que pot tenir el host.

obert el seu servei, mitjançant l’anàlisi de les vulnerabilitats

Resumen

Hoy en dı́a casi todas las compañı́as basan sus modelos de negocio en aplica-

ciones web y servicios online. Estos servicios son públicos para todo el mundo,

incluidos agentes maliciosos que pueden llegar a atacar estos modelos de nego-

cio. Muchas de estas empresas no tienen los conocimientos, el tiempo necesario

o los recursos para analizar si su servicio está libre de posibles ataques. Con este

proyecto intentamos crear una herramienta que pueda ayudar a estas empresas a

conocer los posibles peligros y ataques a los que está abierto su servicio, mediante

un análisis de las vulnerabilidades que puede llegar a tener el host.

I

Table of Contents

List of Figures III

1 Introduction 1

2 Objectives and scope 3

3 Theoretical Framework 5

3.1 Cybersecurity . 5

3.2 Similar solutions . 5

3.2.1 Installed solutions . 5

3.2.2 Online Solutions . 6

3.3 Vulnerability Analysis Tools . 7

3.3.1 Nessus . 7

3.3.2 OWASP ZAP .. 12

3.3.3 Nmap ... 17

3.3.4 Metasploit ... 23

3.3.5 Sqlmap .. 26

3.3.6 WPScan .. 28

3.3.7 Joomscan ... 30

3.3.8 TLSSLed ... 35

3.4 Web Technologies ... 36

II

3.4.1 Front-end .. 36

3.4.2 Back-end ... 39

4 Methodology 41

5 Development 43

5.1 Definition of the functional and technological requirements 43

5.1.1 Functional Requirements .. 43

5.1.2 Technological Requirements .. 44

5.2 Development Process .. 45

5.2.1 Design of the web application ... 45

5.2.2 Code Tools Integration .. 47

5.2.3 Code Front-end .. 53

5.2.4 Code Back-end... 56

5.2.5 Scan Server .. 59

5.2.6 Database... 61

6 Conclusions 64

6.1 Difficulties .. 64

6.2 Future investigations .. 65

6.3 Personal reflections ... 65

7 Bibliography 67

III

List of Figures

3.1 Scan folder and new scan option . 8

3.2 Scan templates . 9

3.3 Configure new scan . 9

3.4 Scan configured.. 10

3.5 Scan finished .. 10

3.6 General results of the scan ... 11

3.7 Detailed scan results .. 11

3.8 Welcome page .. 13

3.9 Introduce url to attack .. 14

3.10 Results of the scan ... 15

3.11 Detailed results of the scan ... 16

3.12 Result of a scan to the port 22, 113 and 139. Source [8] 18

3.13 Example of SYN request and open port. Source [8] 18

3.14 Example of SYN request and closed port. Source [8] 19

3.15 Example of SYN request and filtered port. Source[8] 19

3.16 Result of scan metasploitable2 ... 21

3.17 Result of scan metasploitable2 with services version 22

3.18 Entry message of metasploit ... 24

3.19 Results of vsftpd 2.3.4 ... 24

IV

3.20 Results of vnc 3.3 ... 25

3.21 Intercept request with burpsuite .. 27

3.22 Save request in burpsuite .. 27

3.23 Execute sqlmap with saved request ... 28

3.24 Results of sqlmap ... 28

3.25 Results of wpscan .. 29

3.26 joomscan command to attack host ... 32

3.27 Results of joomscan ... 33

3.28 Enumeration of the components ... 34

3.29 TLSSled command on host 192.168.56.1 443 .. 35

3.30 Files where the results are stored .. 35

3.31 Result of ssl scan ... 36

3.32 Poll from stateofjs [14] ... 37

3.33 Poll from stateofjs [14] ... 38

3.34 Performance comparison. Source [15] .. 39

3.35 Poll from stackoverflow[19] ... 40

5.1 Diagram of the application... 45

5.2 Import and usage of python-nmap. Source [20] .. 48

5.3 Example of result of a scan. Source [20] ... 48

5.4 Window to activate the API ... 49

V

5.5 Example of capturing the output of traceroute... 50

5.6 The script finds where is the output and saves the path to use it later 51

5.7 The [+] signs define what are they checking, and the [++] signs are the

results of that check ... 51

5.8 Structure that returns the wpscan out parse library 52

5.9 Welcome page .. 53

5.10 Register page ... 53

5.11 Login page .. 54

5.12 Main page ... 54

5.13 Create host page .. 55

5.14 Host in detail ... 55

5.15 Create scan page ... 56

5.16 Diagram of the scan back end .. 57

5.17 Example of result .. 59

5.18 Diagram of the database ... 62

VI

Chapter 1. Introduction 1

1. Introduction

This Final Degree Project aims to create a service able to analyse defence vulnerabil-

ities in public hosts. The project is part of a bigger project developed with ESED Ltd.1

with a Software as a Service model.

The security analysis is normally made manually and is a process that takes a lot of

time. Some businesses don’t have the time or the resources to carry out a complete

vulnerability analysis exam. Some of these tests can not be made with the desired

periodicity and intensity, because several of these auditions are really time-consuming

and require multiple steps. At the end of the day, companies work with a tight sched-

ule that they have to fulfil, and the ones that make the decisions do not use to have a

technical profile to notice that their businesses might be in grave danger. This situation

can lead to some security breaches that can gravely harm the company, like exposing

information about the clients, being unable to use their equipment or losing control of

its data.

Through lots of analysis, frameworks of attack can be developed in order to eliminate

the need for a person manually testing those day-to-day vulnerabilities. All these frame-

works save a lot of time to pen-testers but they can also be programmed to be made

periodically and extract daily reports of the vulnerabilities present in the host. Those

reports can be presented to justify the need for more resources, therefore saving time

for the members of the security team.

There are lots of companies that do not check the security of their public hosts and

this leaves them vulnerable to attacks from malicious agents. But, if they could have

an instant security report of the safety of their hosts once this is published, this would

warn them about the possible threats that they may encounter with the actual state of

the host. Also it can help to visualize to a non-technical profile all the vulnerabilities in

order to make better decisions.

1https://www.esedsl.com/

https://www.esedsl.com/

2 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Chapter 2. Objectives and scope 3

2. Objectives and scope

The main objective of this Final Degree Project is to create a full framework to detect

vulnerabilities in public hosts and adapt the framework to work within a larger project.

To accomplice this main goal, it is mandatory to fulfil these subgoals:

• The user must be able to register a host.

• The user must be able to start a scan with a simple command.

• The user must be able to check the status of the scan

• The user must be able to retrieve the information of the scan once it is finished

• The user must be able to make different types of scans.

• The service must be able to deliver a report about the key vulnerabilities found in

the host.

• The service must be able to save all previous reports from each host.

• The report must be understood by a manager profile.

• The report must have enough complexity to be used for a technical profile.

4 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Chapter 3. Theoretical Framework 5

3. Theoretical Framework

3.1 Cybersecurity

Cybersecurity is the practice of protecting systems, networks, and programs from dig-

ital attacks [1]. The attacks come from malicious agents that try to get some type of

benefit from it. In order to protect from an attack, it is necessary to prepare the people

and the equipment. The preparation of the equipment can be done by assessing if

there are any vulnerabilities.

Nowadays there are multiple solutions to protect or prevent attacks from malicious

agents. Some of the solutions similar to the one that we are proposing in this final

degree project can be found in the next section.

3.2 Similar solutions

There exist different types of solutions, some need to be installed, and others are online

and ready to use.

3.2.1 Installed solutions

This solutions need to be installed in a machine in order to work.They need to be

administrated, and much more knowledge is needed in order to make them work. They

are also specialized to check vulnerabilities in all devices inside a network.

Nessus

Nessus is part of the company Tenable [2]. Its features are explaind in more detailed

in section 3.3.1

6 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Netsparker

Netsparker is an online solution owned by Invicti [3]. Some of its features are:

• Vulnerability Trend Report.

• Technology Version Tracking.

• Close security gaps with automated WAF rules.

• Integration into CI/CD tools.

• Simplify Compliance.

• Unlimited Role-Based Access

3.2.2 Online Solutions

These kinds of solutions are ready to use for each user, most of them just need a target

and they are ready to check its vulnerabilities.

Intruder.io

Intruder.io [4] offers a 30 day free trial but does not offer a free version to be tested for

more than 30 days. It is able to identify:

• Common mistakes and configuration weaknesses

• Missing patches

• Application Bugs

• Attack surface reduction

• Encryption weaknesses

Probely

Within its free features [5], these are some of them:

Chapter 3. Theoretical Framework 7

• Verify SSL security

• Security Headers

• Cookie Flags

3.3 Vulnerability Analysis Tools

After looking at some vulnerability analysis tools, it has been decided that these are

going to be the selected ones:

3.3.1 Nessus

It is an open-source network vulnerability scanner that checks computers to find vul-

nerabilities that hackers could exploit. It is able to:

• Search vulnerabilities that could allow unauthorized control or access to sensitive

data on a system

• Scan for misconfigurations

• Search Denials of Service vulnerabilities

• Schedule security audits

• Simulate attacks

• Show vulnerabilities in a graphical and comprehensive way

In this example it is going to be analyzed a metasploitable2 machine:

1. Into the My Scans Folder, we select the New Scan option (Figure 3.1)

2. We select the Web Application Tests option (Figure 3.2)

3. We have to fill the fields (Figure 3.3)

4. We can start the scan with the play button (Figure 3.4)

8 Implementation of a vulnerability analysis service of public hosts with SaaS modality

5. When it is finished we will see a tick before the last modified column (Figure 3.5)

6. If we enter, we can see the results of the analysis (Figure 3.6)

7. Inside the report, the results can be ordered by severity and its score (Figure 3.7)

Figure 3.1: Scan folder and new scan option

Chapter 3. Theoretical Framework 9

Figure 3.2: Scan templates

Figure 3.3: Configure new scan

10 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.4: Scan configured

Figure 3.5: Scan finished

Chapter 3. Theoretical Framework 11

Figure 3.6: General results of the scan

Figure 3.7: Detailed scan results

12 Implementation of a vulnerability analysis service of public hosts with SaaS modality

3.3.2 OWASP ZAP

It is an open-source web application security scanner developed by the Open Web

Application Security Project (OWASP) Foundation [6]. It is a highly recognized tool

used by a lot of security experts and maintained by them with new add-ons that can

be downloaded from the marketplace. It is written mostly in Java and it is available in

Windows, Linux and Mac OS X. Some of its features are:

• It can work as an intercepting proxy

• It is able to perform automated scanners

• Brute force scanning

• Fuzzing

• Port scanning

• Has an advanced SQL Injection Scanner

• It allows users to interact with API REST

We are going to attack a vulnerable host:

1. Select option Automated Scan (Figure 3.8)

2. Enter the url of the web application that you want to test (Figure 3.9)

3. In the alerts section we have all the possible vulnerabilities that we can encounter

in this web application (Figure 3.10)

4. In this part, we can see all the possible vulnerabilities that the web application

can have and some information of how it has been detected (Figure 3.11)

Chapter 3. Theoretical Framework 13

Figure 3.8: Welcome page

14 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.9: Introduce url to attack

Chapter 3. Theoretical Framework 15

Figure 3.10: Results of the scan

16 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.11: Detailed results of the scan

Chapter 3. Theoretical Framework 17

3.3.3 Nmap

Is a free open-source utility for network discovery and security auditing [7]. It was

released on September 1st 1997 by Gordon Lyon in the fifty-first issue of Phrack mag-

azine. A the beginning Nmap only supported Linux operating system and had fewer

functionalities than it does nowadays. Thanks to the Open Source development, this

software has grown to support more functionalities, different operating systems, and it

has become one of the world’s most popular network security scanners.

Nowadays Nmap can perform various tasks such as:

• Searching hosts available on the network

• The OS version of the hosts

• Check which services does a host offer

• See which applications are being run on a host and its version

• Recognise which types of packets and filters/firewalls are in use

To gather all this information, Nmap sends packets to the hosts and analyses and

verifies the information of the answer. For example, in order to perform a port scan by

default, Nmap sends a TCP SYN scan which is really fast and gives information like the

port number, the state (open, closed, filtered,...) and the service that it has associated

(Figure 3.12).

18 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.12: Result of a scan to the port 22, 113 and 139. Source [8]

This TCP SYN scan starts with a TCP packet sent to a host with the SYN Flag set to 1

and the number of the port that it is going to be checked. As it is a TCP SYN request,

the sender wants to create a TCP connection with that port and the receiver has to

respond to that connection.

If the receiver responds with a SYN/ACK packet, it means that the port is open (Figure

3.13).

Figure 3.13: Example of SYN request and open port. Source [8]

If the receiver responds with a RST packet, the port it is closed (Figure 3.14).

Chapter 3. Theoretical Framework 19

Figure 3.14: Example of SYN request and closed port. Source [8]

But if there is no respond after a few tries of connection, the port it is filtered by a firewall

or other type of protection that denies the respond to the sender request (Figure 3.15).

Figure 3.15: Example of SYN request and filtered port. Source[8]

Although a TCP SYN scan is the default option, Nmap is able to perform multiple types

of scans:

• TCP connect scans: Nmaps asks the OS to make a connection if it does not

have privileges to create a packet by itself

• UDP scans: scans for UDP ports, though take much more time because it is

necessary to wait for an answer that may not come.

• SCTP INIT scans: SCTP equivalent scan to TCP SYN.

• TCP NULL, FIN, and Xmas scans: Exploit a subtle loophole in the TCP RFC to

differentiate between open and closed ports.

• TCP ACK scans: It is used to map firewall rule sets.

20 Implementation of a vulnerability analysis service of public hosts with SaaS modality

• TCP Windows scans: Like the TCP ACK but using vulnerabilities from Windows

machines.

• TCP Maimon scans: The same as NULL, FIN and Xmas scans but using FIN/ACK.

• Custom TCP scans: Allows to personalize the scanflags for advanced users.

• SCTP COOKIE ECHO scans: More advanced SCTP scan. Takes advantage

that the drop of packets containing COOKIE ECHO chunks should be silent in

the SCTP implementation.

• Idle scans: Uses a zombie host and does not use the address of the attacker.

• IP protocol scans: Allows to determine the IP protocols that are being used.

• FTP bounce scans: Scanning ports via a remote FTP server.

To exemplify the usage of this tool, it has been used a metasploitable2 machine as a

scanned machine, and a Kali machine as the scanning machine:

1. With the command nmap [IP-Address], it is possible to make a quick scan to see

what ports and services does the machine have open(Figure 3.16).

This is a machine that provides lots of services such as FTP, SSH, HTTP, etc.

2. With the option -sV Nmap detects the versions of these services and with the -sC

option, nmap will run a default script to grab more detailed information (Figure

3.17).

Chapter 3. Theoretical Framework 21

Figure 3.16: Result of scan metasploitable2

22 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.17: Result of scan metasploitable2 with services version

Chapter 3. Theoretical Framework 23

3.3.4 Metasploit

Is one of the most used open-source penetration testing frameworks and it was re-

leased in 2003 by H. D. Moore as a portable network tool using Perl [9]. In 2007 it

was rewritten in Ruby and in 2009 it was bought by Rapid7, a security company that

provides vulnerability management solutions. It has a huge amount of exploits to use.

Metasploit helps us with:

• Check vulnerabilities

• Using exploits for those vulnerabilities

• Setting and configuring an exploit

• Choosing and configuring a payload

• Execute the exploit

Let’s check for vulnerabilities from the previous nmap scan:

1. After we gather this information, we can go to Metasploit console and search for

possible vulnerabilities (Figure 3.18).

2. In this case, we have searched for a vulnerability in vsftpd v2.3.4, and we have

found that it exists an exploit from 2011 ranked as excellent (Figure 3.19).

3. We can search for more vulnerabilities like vnc 3.3. In this case we can find that

they exist some exploits for this protocol too, but they have a lower rank (Figure

3.20).

24 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.18: Entry message of metasploit

Figure 3.19: Results of vsftpd 2.3.4

Chapter 3. Theoretical Framework 25

Figure 3.20: Results of vnc 3.3

26 Implementation of a vulnerability analysis service of public hosts with SaaS modality

3.3.5 Sqlmap

It is an open-source penetration testing tool that automates the process of detecting

and exploiting SQL injection flaws [10]. It is also able to exploit the found vulnerabilities

to look Databases and take their information.

Some of its features are:

• Full Support for MySQL, Oracle, PostgreSQL, Microsoft SQL Server, Maria DB ...

• It supports six SQL Injection techniques:

– Boolean-based blind

– Time-based blind

– Error-based

– UNION query-based

– Stacked queries and out-of-band

• Can ennumerate users, password hashes, privileges, roles, databases, tables

and columns

• Automatic recognition of password hash formats and support for cracking them

using a dictionary-based attack.

We are going to attack the metasploitable2 machine, the mutillidae application:

1. Get a request with a proxy, in this case it has been used Burp Suite (Figure 3.21).

2. Save the request in a .txt to use it with sqlmap (Figure 3.22).

3. Use the request previously saved in the sqlmap -r instruction (Figure 3.23).

4. If it is injectable, there should be something like this, where it shows us which is

the database type and the types of injections that can be made (Figure 3.24).

Chapter 3. Theoretical Framework 27

Figure 3.21: Intercept request with burpsuite

Figure 3.22: Save request in burpsuite

28 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.23: Execute sqlmap with saved request

Figure 3.24: Results of sqlmap

3.3.6 WPScan

The WPScan CLI tool is a free, for non-commercial use, black box WordPress security

scanner written for security professionals and blog maintainers to test the security of

their sites [11].

Chapter 3. Theoretical Framework 29

It checks for:

• WordPress version installed and associated vulnerabilities

• Which plugins and themes are installed and if they are vulnerable

• Username enumeration

• Users with weak password via password brute forcing

• Backed up and public accessible wp-config.php files

• ...

An example of the usage of this tool can be seen below (Figure 3.25).

Figure 3.25: Results of wpscan

30 Implementation of a vulnerability analysis service of public hosts with SaaS modality

3.3.7 Joomscan

JoomScan is an open-source project, developed with the aim of automating the task

of vulnerability detection and reliability assurance in Joomla CMS deployments[12]. It

was released in 2018 by OWASP (Open Web Application Security Project) and it is

implemented in Perl.

It is only capable of detecting already known vulnerabilities and detect many miscon-

figurations that may led to vulnerable situations.Some of its features are:

• Version enumeration

• Vulnerability enumeration

• Components enumeration

• Components vulnerability enumeration

• Firewall detection

• Finding common log files

• Finding common backup files

Even if it has all this features, it has its limitations:

• The database still lacks of unknown exploit checks

• Lacks IDS (Intrusion Detection System) evasion bypass

• Lacks sophisticated fuzzing

• It is not a full fledged SQL Injection tool

To perform a scan of a Joomla website, the scanner create a series of GET Requests

to identify possible vulnerabilities. For example, to get the Joomla version that is being

used, a request with the url:

https://[HOST]/administrator/manifests/files/joomla.xml is sent and the returned XML

Chapter 3. Theoretical Framework 31

file contains the version among other things. If the asked resource does exist, Joom-

scan checks for a possible vulnerability, depending of the type, it may require the usage

of a sample exploit string, but if the exploit string is not available, it works out the vul-

nerability state with version deduced.

Using this tool does not require lots of arguments, with just the url, it performs a basic

scan that checks all the vulnerabilities previously mentioned. In the next example, a

Joomla website is being scaned with a kali machine:

1. To check a web application, we have to introduce the parameter -u to and its url

(Figure 3.26).

2. After that, it should appear a report from the scan. As we can see it shows

information about the joomla version, which are the directories that we can find

. . . (Figure 3.27).

3. With the -ec option we can enunmerate all the components that are being used

(Figure 3.28).

4. If there is any vulnerability it should appear.

32 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.26: joomscan command to attack host

Chapter 3. Theoretical Framework 33

Figure 3.27: Results of joomscan

34 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.28: Enumeration of the components

Chapter 3. Theoretical Framework 35

3.3.8 TLSSLed

TLSSLed is a Linux shell script whose purpose is to evaluate the security of a target

SSL/TLS (HTTPS) web server implementation [13]. Some of the tests that it performs

are:

• Check which versions of SSL support

• Check which versions of TLS support

• NULL cipher

• The strength of the cipher method based on key length

• The availability of strong ciphers

• If the digital certificate is MD5 signed

• Renegotiation capabilities of the server

We are going to check the SSL/TLS from our joomla server:

1. You run the command tlssled [IP address] [Port] (Figure 3.29).

Figure 3.29: TLSSled command on host 192.168.56.1 443

2. Once the command has finished, we have the results in different files (Figure

3.30).

Figure 3.30: Files where the results are stored

3. For example, if we open the sslscan file, we can see which TLS versions are

enabled and if there are yellow, it might be a problem (Figure 3.31).

36 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.31: Result of ssl scan

3.4 Web Technologies

This section details the possible web technologies and determines which is the best

for the project.

3.4.1 Front-end

The Front-end is the part of the web application users interact to make requests and

receive data. This is the most visible part of the website and there are different solu-

tions:

• HTML: or HyperText Markup Language, it is the basic of the web. Defines the

structure and the content of all the web.

• CSS: or Cascading Style Sheets, it is used to describe how all the elements of

the page are rendered.

• JavaScript: is a programming language very popular in the web environment be-

cause it is used as a scripting language. It is a prototype-based, multi-paradigm,

single-threaded, dynamic language, supporting, imperative, and declarative styles.

JavaScript has very powerful libraries and Frameworks that can help to build dy-

Chapter 3. Theoretical Framework 37

namic front-end:

– Vue.js: is a JavaScript framework for building user interfaces. The two

main features of Vue.js are Declarative Rendering, which allows changing

the HTML state depending on the JavaScript state, and Reactivity, meaning

that Vue.js can track the JavaScript state to efficiently update the DOM.

– React.js: is a JavaScript library developed by Facebook Inc. As Vue.js, it

also uses a Declarative Rendering and Reactivity. A peculiar thing about

React is that uses a language called JSX for the rendering. This language

is a mix of HTML and JavaScript.

– Angular: is a JavaScript framework developed by Google. It has a similar

functionality as Vue.js and React, but instead of working with a virtual DOM,

Angular uses the real DOM. It is also known for a pronounced learning curve.

The front-end of the application uses HTML, CSS, JavaScript and Vue.js. After compar-

ing Vue.js, React.js and Angular, the framework that better suits the project is Vue.js.

As it can be seen in figure3.32 and in figure 3.33 Angular is not well regarded in the

community, excluding it from the viable options.

Figure 3.32: Poll from stateofjs [14]

38 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 3.33: Poll from stateofjs [14]

This leaves the contest to Vue.js and React.js. Both are flexible and scalable tools.

But Vue.js uses plain HTML which is easier to migrate than JSX, being the first more

versatile. Also in the next figure (Figure 3.34), it can be seen that Vue.js performs a

little better in general and decanting the balance in favour of Vue.js.

Chapter 3. Theoretical Framework 39

Figure 3.34: Performance comparison. Source [15]

3.4.2 Back-end

The back-end responses to what the front end has initiated [16]. It is the most compu-

tational part of a web page, and some of the most used languages are:

• Python: is a multiparadigm, general-purpose, interpreted, high-level program-

ming language [17]. It is useful to process text, which is necessary in this project

because some of the previous mentioned vulnerability analysis tools return out-

puts in raw text.

40 Implementation of a vulnerability analysis service of public hosts with SaaS modality

• PHP: or Hypertext Preprocessor, it is one of the top ten most popular program-

ming languages as it can be seen in figure 3.35. Also the Laravel framework pro-

vides easy to build web applications. It helps with the connection to the database,

session based authentication and more [18].

Figure 3.35: Poll from stackoverflow[19]

These are the two languages that are used in the project because ESED works with

them.

Chapter 4. Methodology 41

4. Methodology

In order to accomplish the objectives that have been described earlier, the principles of

the Agile Manifesto are taken into account. This means that there are meetings twice

a month with both, the academic and the business tutor. The changes are welcome,

and the top priority is to deliver value in the moment rather than a work in progress.

To follow these guidelines, the project is divided into different stages and with each

stage having its own tasks:

1. Analysis and Investigation

(a) Investigate possible solutions

(b) Analyse which one of the possible solutions is the best for the project

2. Design and architecture

(a) Design the implementation

(b) Take into account the requirements

3. Implementation

(a) Develop the solution

4. Testing the implementation

(a) Test the requirements

(b) Test if the users can use the application without help

5. Evaluation of the results

(a) Check if the results align with the expected output

(b) Evaluate what has gone wrong

(c) Investigate ways to improve this last iteration

(d) Schedule the next iteration

42 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Even though the stages and tasks are written in a sequence, this does not mean that

they are followed just one time. They are a cycle of N iterations.

To make the evaluation of the project, it is important to notice that two different ap-

proaches are used, the first one in the academic part, and the second one in the

business part:

1. Academic: The meetings take place two Mondays per month and, if it is possible,

they are face-to-face. If it is not possible to be in the same room with the tutor,

the meeting takes place in Zoom. Mail is used to be in contact.

The text editor platform used is Overleaf and it is where the tutor makes the cor-

rections of the thesis. In this part of the project, the references are very important.

2. Business: There are meetings on Fridays twice a month. These meetings take

place in Google Meet and have a duration of half an hour. Doubts and requests

can be done in Google chat. The project is planned in the web application clickup.

For this part of the project is very important to test if the implementations perform

as expected.

Chapter 5. Development 43

5. Development

5.1 Definition of the functional and technological re-

quirements

In order to be a satisfactory service, it has to accomplish different functional and tech-

nological requirements.

5.1.1 Functional Requirements

• The service must be available 24x7 online

1. Check the service status continuously

• The service must be able to register and manage hosts

1. Register host

2. Check that the host is registered

3. Remove host

4. Check if the host is removed

• The service must be able to run a vulnerability analysis

1. Define the attacked host

2. Define the type of scan

3. Check if the scan has started

• The service must be able to show the progress of an analysis

1. Ask for the progress of a scan

2. Return if the scan is in progress

3. Return if the scan is finished

44 Implementation of a vulnerability analysis service of public hosts with SaaS modality

4. Return if the scan has failed

• The service must be able to generate and show a report of the analysis

1. Ask for the results of a scan

2. Return the results of the scan

• The service must be able to perform multiple scans on the same host

1. Define the attacked host

2. Define the type of scan

3. Check if the scan has started

5.1.2 Technological Requirements

• The service must be hosted online in a private machine

1. The host can only be accessible to a specific user

2. Check if the host functions as expected

• The service must be able to save more than one host

1. Register one host

2. Register a second host

3. Check if both hosts exist

• The service must be able to make a vulnerability analysis

1. Define a host

2. Define the type of scan

3. Check if the scan has started

• The service must be able to generate a report from an analysis

1. Initialize a vulnerability analysis on a host

Chapter 5. Development 45

2. Check if it shows the results as a report

• The service must be able to store all the reports from one host

1. Initialize a vulnerability analysis on a host

2. Check if the report is stored in the database

5.2 Development Process

5.2.1 Design of the web application

The web application is divided in four parts: the front end, the back end, the scan

server and the database.

Figure 5.1: Diagram of the application

Front End

This part of the application is the visible part for the final user. From this part, the user

is able to:

• Register to the application

46 Implementation of a vulnerability analysis service of public hosts with SaaS modality

• Login

• Do a scan

• See the results of the scan

Back End

All the users’ requests are processed in this part of the application. It is in charge of:

• Register a host

• Send a scan request to the scan server

• Process the results of the scan

• Save the results of the scan in the database

Scan server

The scan server is where all the attack tools are used. The back-end sends a request

with all the parameters needed to create a scan, this server processes it and sends

the results in a raw JSON. This server is able to use different types of tools. Nes-

sus, Metasploit, and Sqlmap could not enter due to lack of time. There are five tools

available:

• Nmap

• OWASP ZAP

• Traceroute

• TLSSLed

• Joomscan

• WPScan

Chapter 5. Development 47

Database

This part is in charge of saving all the information relative to:

• Hosts’ information

• Failed scans

• Results of the scans

• Raw data of the scans

5.2.2 Code Tools Integration

All the tools used for this project are commonly used in a manual way, the user intro-

duces the commands necessary to perform an action and the tool returns something,

generally text, that the user can understand. The objective for this part of the project is

to introduce the commands and interpret the data with a script. This allows to automa-

tize and control the scans from the back-end.

To be able to automatize the different tools, there must be a first phase of communica-

tion where it is defined what the tools must do, and a second phase of gathering the

results. There are tools that the first and second phase is performed with a simple API

provided by the same tool, but there are others that must be executed with commands,

and the results gathered also from the command prompt.

In the next subsections, it is detailed the process followed for each of the different tools

available now in the project.

Nmap

Nmap does not have an API to make scans and gather results, but some people have

made libraries to integrate Nmap with Python. The library used for this project is called

python-nmap [20] and it allows the user to perform scans with simple python commands

48 Implementation of a vulnerability analysis service of public hosts with SaaS modality

and receive the result in an array.

To create a scan with this library it is necessary to import the library, invoke the method

PortScanner() and invoke the method scan() (Figure 5.2).

Figure 5.2: Import and usage of python-nmap. Source [20]

The scan method can accept arguments like the IP of the host, the ports to be scanned,

and the arguments to be used among others. This function executes a Nmap command

and waits for the results. When Nmap has ended the scan, the results can be retrieved

from an array that python-nmap creates (Figure 5.3).

Figure 5.3: Example of result of a scan. Source [20]

In the actual state of the project, this script is able to create a scan with the IP, the ports,

and the arguments of a Nmap normal scan and return the results in a JSON response.

Chapter 5. Development 49

OWASP ZAP

The OWASP ZAP software has an option to enable an API mode [21] Figure 5.4. With

this API it is possible to ask the same things as if it was used manually. It also has a

library for Python [22] that allows to make the API calls from it.

Figure 5.4: Window to activate the API

50 Implementation of a vulnerability analysis service of public hosts with SaaS modality

The possible requests that can be done to the scan server can perform spider attacks

to index a targeted web application and perform active scans to discover possible vul-

nerabilities.

Traceroute

This tool was implemented in the last place and asked for ESED. It is capable to know

the route that the user follows to reach the destination address. For this tool, there are

no APIs, libraries, or saves the result in a .txt. To gather the information that this tool

gives, it has been necessary to analyze the output of the machine. The subprocess

module [23] can save the output when the capture output is set to True. In the Figure

5.5 we can see an example of the execution of this tool.

Figure 5.5: Example of capturing the output of traceroute

TLSSLed

This tool does not have any API or parser to gather the output. TLSSLed creates a

folder with the results of the scan in plain text. To gather the results, a script of Pyhton

deletes the previous scan and then processes the results which are saved as JSON

data. To know which one is the file that contains the output, first, the output is captured

with the subprocess modules, as seen earlier, and then the script searches the file and

the path (Figure 5.6).

Chapter 5. Development 51

Figure 5.6: The script finds where is the output and saves the path to use it later

Joomscan

Joomscan functions similar to TLSSLed. It creates an output that is saved in a folder.

To convert the output to a JSON format, a Python script analyses the different rows

of the output.txt. The output of the scan is delimited by marks that make it easier to

process (Figure 5.7).

Figure 5.7: The [+] signs define what are they checking, and the [++] signs are the

results of that check

52 Implementation of a vulnerability analysis service of public hosts with SaaS modality

WPScan

To this tool there is a library called wpscan out parse[24]. This library can be used as

a client or as a Python library. This project uses it as a library. This parser returns the

results as a JSON, it shows the info, warnings, and alert messages (Figure 5.8).

Figure 5.8: Structure that returns the wpscan out parse library

Chapter 5. Development 53

5.2.3 Code Front-end

This part of the project was abandoned because ESED does not need the front-end to

use the service. They use the service with the API. The developed part uses HTML,

CSS, JavaScript and Vue. It consists of different views:

A welcome view (Figure 5.9), where the user can select if he wants to go to the login

page or the register page.

Figure 5.9: Welcome page

A register page (Figure 5.10), to register the personal information of the user.

Figure 5.10: Register page

54 Implementation of a vulnerability analysis service of public hosts with SaaS modality

The login page (Figure 5.11), the normal entrance point of a known user.

Figure 5.11: Login page

The main page (Figure 5.12) where the user can find all the hosts created by him.

Figure 5.12: Main page

Chapter 5. Development 55

A host creation page (Figure 5.13), to create all the hosts of the user.

Figure 5.13: Create host page

A detailed view of a host (Figure 5.14), to see all the information about it.

Figure 5.14: Host in detail

56 Implementation of a vulnerability analysis service of public hosts with SaaS modality

And the scan host page (Figure 5.15), where the user can decide to make a fast scan,

a normal scan or a complete scan.

Figure 5.15: Create scan page

The user does not know the details of how this scan is performed, he can just see the

results.

The result of the scan is returned in JSON, but it is explained in the next section.

5.2.4 Code Back-end

The back-end is programmed with PHP and the help of the Laravel framework. It is the

core of the application and is where all the requests are processed. The process that

takes place when a scan is requested follows the next path (Figure5.16):

1. The user sends a scan request

2. The scan launcher uses one of the three types of scanner classes to start the

scan

3. The scan launcher informs that the scan has started successfully

4. The scanner class creates the jobs required to make the scan

Chapter 5. Development 57

5. Each job is executed and saves the result to the database

6. Once all the jobs have finished, the results of each one of them is retrieved and

analysed giving to each scan a score that is saved in the database

Figure 5.16: Diagram of the scan back end

58 Implementation of a vulnerability analysis service of public hosts with SaaS modality

API

The scan request is done with an API. The endpoints of the API are:

• /api/targets

– method: GET

– description: Returns a list of all the hosts

– returns:

• /api/targets

– method: POST

– description: Adds a new target

– body:

* url : String — mandatory

• /api/targets/{target id}

– method: DELETE

– description: Deletes the target of the parameter target id

– parameter:

* target id : Integer — mandatory

• /api/scans

– method: POST

– description: Starts an scan

– body:

* target id : Integer — mandatory

* type : {”fast”, ”normal”, ”complete”} — mandatory

• /api/scans/{scan id}

Chapter 5. Development 59

– method: GET

– description: Returns the scan with the same scan id

– parameter:

* scan id : Integer — mandatory

• /api/scans/{scan id}/results

– method: GET

– description: Returns the results of the scan with the same scan id

– body:

* scan id : Integer — mandatory

The results of the scans are returned in an array. Each element of the array is another

array that contains a title, description, remediation, and the severity of the problem

(Figure 5.17).

Figure 5.17: Example of result

5.2.5 Scan Server

The scan server is a Kali machine that contains the tools and scripts needed to perform

the scans. The communication with the back-end is done thanks to an API programmed

in Python that has seven endpoints:

• /nmap

– method: POST

60 Implementation of a vulnerability analysis service of public hosts with SaaS modality

– body:

* url : String — mandatory

* ports : Integer — optional

* parameters : String — optional

• /zap/spider

– method: POST

– body:

* url : String — mandatory

* maxchildren : Integer — optional

* recurse : Boolean — optional

* contextname : String — optional

* subtreeonly : String — optional

• /zap/ascan

– method: POST

– body:

* url : String — mandatory

* recurse : Boolean — optional

* inscopeonly : Boolean — optional

* scanpolicyname : String — optional

* method : String — optional

* postdata : String — optional

* contextid : String — optional

• /tlssled

– method: POST

– body:

* url : String — mandatory

Chapter 5. Development 61

* port : Integer — mandatory

• /joomscan

– method: POST

– body:

* url : String — mandatory

• /wpscan

– method: POST

– body:

* url : String — mandatory

• traceroute

– method: POST

– body:

* url : String — mandatory

Each of the different endpoints calls to a function that executes the tool script and

returns the result as a JSON.

At the beginning of the project, this Kali was a virtual machine with a GUI and some

tools that were not required. Esed requested to changethe Kali machine from a virtual

image to a Docker container. This change has allowed us to just select the tools that

we need for the scans and has also allowed us to gain in performance.

5.2.6 Database

The database (Figure 5.18) is a MySQL database. It is generated automatically and

controlled with Laravel. To create a new table, it is necessary to create first a model

class that contains the attributes. Once the model class is created, it should appear a

create migration file that contains the definition of the database.

62 Implementation of a vulnerability analysis service of public hosts with SaaS modality

Figure 5.18: Diagram of the database

At the moment there is no need to use a non-relational database because the volume

of data is small, but in the future, it may be required to save part of the data in a

MongoDB database.

Chapter 5. Development 63

64 Implementation of a vulnerability analysis service of public hosts with SaaS modality

6. Conclusions

In this final degree project, we have developed a service to detect vulnerabilities in

public hosts. The service is now running on an Ubuntu machine and is being used by

ESED as another provider. From the technical part, the project fulfils the goals defined

at the start of this document.

Even though it has not been possible to implement all the tools and features that we

would like, the project has a solid base that allows us to add more tools and features

with ease. To implement or change any of the tools, there is a predefined way that

helps the developer to focus on the details of the tool, instead of worrying about how to

implement it into the system.

6.1 Difficulties

The first difficulty that we have encountered in this project has been the need of learn-

ing how to use the different tools for scanning vulnerabilities. Each one of the tools

works in a completely different way. To implement them into this service, we have had

to learn to use new specific Python libraries, and specific APIs or extract the results

from the output in plain text.

The second major difficulty has been learning to use PHP from scratch and using Lar-

avel. PHP is a language that we have not seen in the degree, and even though it is

similar to others, it has some peculiarities which make it unique. On the other hand,

Laravel is a framework to work with PHP that has a specific way of working. Once the

developer is used to working with Laravel, it is fast and efficient, but during the process

of learning we have found some situations that seemed logical, but Laravel would not

permit.

The last difficulty that we have struggled with it has been Docker. At the start of the

Chapter 6. Conclusions 65

project, we did not know that we were going to use this technology, but at the start of

May, ESED proposed to use this technology to host the scan server. It has not been

one of the most difficult parts of the project, but it has forced us to move the schedule

and adapt to the new situation.

6.2 Future investigations

This project will probably continue to develop with ESED. Some of the improvements

that they could do are:

• Add more scanning tools to contrast the information.

• Add different tools to check other types of vulnerabilities.

• Change some of the tools like OWASP ZAP for others that do not have such a

big impact on the performance of the machine.

• Write more detailed descriptions of the results that the different scans give.

• Adapt the code to use more than one scan server at the same time.

These are the future investigations that we propose from an academic perspective, but

this project is still a service that will be used by ESED. In the end, they will know which

are the lacking parts of the project, and which are the improvements that the project

needs.

6.3 Personal reflections

This project has allowed me to investigate and learn about the cybersecurity field,

which we have not seen in the degree. It also has given me the opportunity to apply

and practice concepts seen in class like APIs, different frameworks, and virtualization

among others.

66 Implementation of a vulnerability analysis service of public hosts with SaaS modality

As seen earlier in the future improvements section, there are still things that could be

done to continue with this project. But time is finite and there is always something that

can be improved. The overall feeling of the project is that expectations have been met,

and it has been a productive investment of time.

Personally, I have enjoyed making this final degree project. I think it has been an oppor-

tunity to learn a lot about cybersecurity, virtualization with Docker, web development,

and meet new people that work in the same field that I want to work in the future.

Chapter 7. Bibliography 67

7. Bibliography

[1] What is cybersecurity? - cisco. https://www.cisco.com/c/en/us/products/

security/what-is-cybersecurity.html.

[2] Descargue la evaluación de vulnerabilidades nessus — tenable®. https://

es-la.tenable.com/products/nessus.

[3] Invicti — web application security for enterprise. https://www.invicti.com/.

[4] Intruder — an effortless vulnerability scanner. https://www.intruder.io/.

[5] What is the free plan? — probely help center. https://help.probely.com/en/

articles/1974121-what-is-the-free-plan.

[6] Owasp zap. https://www.zaproxy.org/.

[7] Nmap: the network mapper - free security scanner. https://nmap.org/.

[8] Tcp syn (stealth) scan (-ss) — nmap network scanning. https://nmap.org/book/

synscan.html.

[9] Metasploit — penetration testing software, pen testing security — metasploit.

https://www.metasploit.com/.

[10] sqlmap: automatic sql injection and database takeover tool. https://sqlmap.

org/.

[11] Wpscan wordpress security scanner. https://wpscan.com/

wordpress-security-scanner.

[12] Owasp/joomscan: Owasp joomla vulnerability scanner project. https://github.

com/OWASP/joomscan.

[13] tlssled — kali linux tools. https://www.kali.org/tools/tlssled/.

[14] State of js 2020: Front-end frameworks. https://2020.stateofjs.com/en-US/

technologies/front-end-frameworks/.

https://www.cisco.com/c/en/us/products/security/what-is-cybersecurity.html
https://www.cisco.com/c/en/us/products/security/what-is-cybersecurity.html
https://es-la.tenable.com/products/nessus
https://es-la.tenable.com/products/nessus
https://www.invicti.com/
https://www.intruder.io/
https://help.probely.com/en/articles/1974121-what-is-the-free-plan
https://help.probely.com/en/articles/1974121-what-is-the-free-plan
https://www.zaproxy.org/
https://nmap.org/
https://nmap.org/book/synscan.html
https://nmap.org/book/synscan.html
https://www.metasploit.com/
https://sqlmap.org/
https://sqlmap.org/
https://wpscan.com/wordpress-security-scanner
https://wpscan.com/wordpress-security-scanner
https://github.com/OWASP/joomscan
https://github.com/OWASP/joomscan
https://www.kali.org/tools/tlssled/
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/

68 Implementation of a vulnerability analysis service of public hosts with SaaS modality

[15] Vue vs react: What is the best javascript framework in 2022? — codica. https:

//www.codica.com/blog/react-vs-vue/,.

[16] What is a back end system? - definition from techopedia. https://www.

techopedia.com/definition/1405/back-end-system.

[17] What is python? - definition from techopedia.

https://www.techopedia.com/definition/3533/python.

[18] Laravel - the php framework for web artisans. https://laravel.com/.

[19] Stack overflow developer survey 2021. https://insights.stackoverflow.com/

survey/2021#technology-most-popular-technologies.

[20] python-nmap · pypi. https://pypi.org/project/python-nmap/.

[21] Introduction – api reference. https://www.zaproxy.org/docs/api/

#introduction.

[22] python-owasp-zap-v2.4 · pypi. https://pypi.org/project/

python-owasp-zap-v2.4/.

[23] subprocess — subprocess management — python 3.10.5 documentation. https:

//docs.python.org/3/library/subprocess.html.

[24] tristanlatr/wpscan out parse: Python parser for wpscan output files (json and cli).

https://github.com/tristanlatr/wpscan_out_parse.

https://www.codica.com/blog/react-vs-vue/
https://www.codica.com/blog/react-vs-vue/
https://www.techopedia.com/definition/1405/back-end-system
https://www.techopedia.com/definition/1405/back-end-system
http://www.techopedia.com/definition/3533/python
https://laravel.com/
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://pypi.org/project/python-nmap/
https://www.zaproxy.org/docs/api/#introduction
https://www.zaproxy.org/docs/api/#introduction
https://pypi.org/project/python-owasp-zap-v2.4/
https://pypi.org/project/python-owasp-zap-v2.4/
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://github.com/tristanlatr/wpscan_out_parse

	Grau en Enginyeria Informa`tica de Gestio´ i Sistemes d’Informacio´
	Thesis
	Abstract
	Resum
	Resumen
	Table of Contents
	List of Figures
	1. Introduction
	2. Objectives and scope
	3. Theoretical Framework
	3.1 Cybersecurity
	3.2 Similar solutions
	3.2.1 Installed solutions
	Nessus
	Netsparker

	3.2.2 Online Solutions
	Intruder.io
	Probely

	3.3 Vulnerability Analysis Tools
	3.3.1 Nessus
	3.3.2 OWASP ZAP
	3.3.3 Nmap
	3.3.4 Metasploit
	3.3.5 Sqlmap
	3.3.6 WPScan
	3.3.7 Joomscan
	3.3.8 TLSSLed

	3.4 Web Technologies
	3.4.1 Front-end
	3.4.2 Back-end

	4. Methodology
	5. Development
	5.1 Definition of the functional and technological re- quirements
	5.1.1 Functional Requirements
	5.1.2 Technological Requirements

	5.2 Development Process
	5.2.1 Design of the web application
	Front End
	Back End
	Scan server
	Database

	5.2.2 Code Tools Integration
	Nmap
	OWASP ZAP
	Traceroute
	TLSSLed
	Joomscan
	WPScan

	5.2.3 Code Front-end
	5.2.4 Code Back-end
	API
	• /api/targets
	• /api/targets (1)
	• /api/targets/{target id}
	• /api/scans
	• /api/scans/{scan id}
	• /api/scans/{scan id}/results

	5.2.5 Scan Server
	• /nmap
	• /zap/spider
	• /zap/ascan
	• /tlssled
	• /joomscan
	• /wpscan
	• traceroute

	5.2.6 Database

	6. Conclusions
	6.1 Difficulties
	6.2 Future investigations
	6.3 Personal reflections
	7. Bibliography

