

Degree in Design and Production of Videogames

Reduction of the Workload in Unity

Final Report

GUILLEM POY TRUJILLO

TUTOR: DR. ENRIC SESA NOGUERAS

2020-2021

ABSTRACT

This final year project tries to identify and implement the most useful additions that could

be integrated into Unity, in a reasonable time frame by one person and with the objective

of reducing the workload of the engine’s users as much as possible.

RESUMEN

Este proyecto de fin de carrera trata de identificar e implementar las adiciones más útiles

que podrían integrarse en Unity, en un plazo razonable de tiempo, por una sola persona

y con el objetivo de reducir al máximo la carga de trabajo de los usuarios del motor.

RESUM

Aquest projecte de fi de carrera intenta identificar i implementar les addicions més útils

que podrien integrar-se a Unity, en un termini raonable de temps, per una sola persona

amb l’objectiu de reduir al màxim la càrrega de treball dels usuaris del motor.

Contents III

TABLE OF CONTENTS

1 INTRODUCTION .. 9

2 OBJECTIVES ... 11

2.1 Developing tools to reduce the amount of work in most Unity projects 11

2.1.1 Finding the best metrics to evaluate each feature .. 11

2.2 Secondary objectives .. 11

2.2.1 Usability ... 11

2.2.2 Good software design practices .. 12

2.2.3 Demos ... 12

3 REFERENTS .. 13

4 THEORETICAL FRAMEWORK ... 19

4.1 How to choose which features to implement .. 19

4.1.1 Calculating the payoff and the investment .. 20

4.2 Unity Software ... 22

4.2.1 Unity guidelines ... 22

4.3 Good Software Design Practices .. 34

5 SCHEDULE AND METHODOLOGY .. 37

6 PROJECT DEVELOPMENT .. 39

6.1 Preliminaries.. 39

6.1.1 Finding weaknesses in the existing asset ... 39

6.1.2 Finding the most common needs .. 41

6.1.3 Deciding the metrics .. 43

6.1.4 Rating the features .. 46

6.2 Maintenance and implementation ... 49

6.2.1 Fixing the weak points ... 49

6.2.2 Implementing new features ... 63

6.2.3 Integrating externally developed features ... 91

6.2.4 Documentation .. 94

IV Reduction of the Workload in Unity

6.3 Distribution .. 96

6.3.1 Publishing to the Asset Store .. 96

6.3.2 Asset Store page ... 99

6.3.3 Changes on each version ... 100

7 RESULTS ... 105

7.1 Where to find it .. 105

8 CONCLUSIONS ... 107

8.1 Regarding the objectives ... 107

8.1.1 Developing an asset to reduce the amount of work in most Unity projects 107

8.1.2 Finding the best metrics to evaluate the value of each feature .. 108

8.1.3 Usability ... 109

8.1.4 Good software design practices .. 110

8.1.5 Demos ... 110

8.2 Usage by Unity users .. 111

8.3 Personal reflexion ... 112

9 BIBLIOGRAPHY ... 115

Contents V

FIGURES INDEX

Figure 1. Basic layout of the PICK chart. .. 19

Figure 2. Example of an organized and properly named folders .. 23

Figure 3. Example of an ideally nested Editor Extension ... 28

Figure 4. Gantt chart of the schedule for the different tasks and milestones of the project. 38

Figure 5. Post made in the Unity Forum to ask the users of Unity which missing features they would like to

have integrated in the engine. ... 41

Figure 6. Essentials' Settings and Modifications window with the mouse hovering on the “Apply” button for

the “Install Quick Search” modification with its tooltip being displayed. ... 50

Figure 7. At the left, the old inspector for the Animations Manager. At the right, the new inspector for the

Animations Manager. .. 57

Figure 8. A screenshot of the Shortcut Manager where the “Clear Console” shortcut information can be

seen. .. 61

Figure 9. Visualization of the camera animation in four steps (1 to 4). The field of view, background colour,

proportions (rect) and clipping planes are animated. Note: Some GameObjects seem to disappear or lose

mesh faces, but it is due to the animation of the clipping planes. ... 64

Figure 10. From left to right: the animation progressing in the MiscellanyAnimations scene, where the colour

of an image, an integer, a float, a Vector2 and a Vector3 are animated. ... 65

Figure 11. At the left, the configuration view of a Sequence in the inspector. At the right, the console

displaying debug messages proving the functionality of the Sequence. .. 67

Figure 12. Visualization of the tool in action snapping a capsule on top of a sphere. 69

Figure 13. In the inspector it can be seen how the tool is activated while in the console, the results are

displayed. .. 72

Figure 14. At the top left, the Essentials Settings window showing the modification to activate the tool. At

the bottom, two inspectors demonstrate how the preset is applied to the Assets in the same folder. 73

VI Reduction of the Workload in Unity

Figure 15. In the hierarchy it can be seen how the tool is activated while in the console, the results are

displayed. .. 74

Figure 16. Buttons in the AudioSourceManagerExample scene that demonstrate and test the core

functionality of the AudioSourceManager component. ... 78

Figure 17. At the left, the context menu for the component Transform in the version of Unity 2019.4.21f1.

At the right, the same menu in the version 2020.3.2f1. New functionality such as the one described by this

feature can be found in the latest context menu. .. 80

Figure 18. Visualization of the ConsoleExample running with the native console of the editor at the bottom

left, the ConsoleGUI at the top left, the ConsoleTMP at the top right and the ConsoleTextUI underneath. At

the bottom right, the file created containing the logs for the running session. .. 82

Figure 19. At the top, the button in the preset’s inspector that easily allows the user to set it as the default

configuration for the imported assets of the same type. At the bottom, the Preset Window Manager that

allows the management of the presets, including the configuration of the filtering used to apply them. 85

Figure 20. Layers’ drop-down where they can be locked. It is placed at the top right of the editor’s window.

 .. 86

Figure 21. At the right, the component where the test and demonstration of the feature can be done by

modifying the values and using the available buttons. At the Top left, the hierarchy of the example scene

for this feature and, under it, the files holding the component’s data. .. 89

Figure 22. Option to start the creation process of a divider in the hierarchy. ... 93

Figure 23. Divider creator tool. The window where you can configure the characteristics of the divider. .. 93

Figure 24. Example of XML comment from the asset’s code ... 94

Figure 25. Example of the generated documentation of a method from the asset using “Doxygen” 95

Figure 26. View of the “Release Notes” section of the Unity Publisher Portal 2.0 with the information

regarding the update to the version 1.2.0 ... 97

Figure 27. At the left, the Package Upload window. At the top right, the Validator window. At the bottom

right, the Project folders structure window. ... 98

Figure 28. The pop-up displayed after submitting the update for the asset using the Unity Publisher Portal

2.0 informing about the review process schedule. .. 99

Contents VII

Figure 29. Some of the images present in the asset’s page summarizing main features 100

Figure 30. Essentials Settings window at the release of the version 1.4.0. .. 102

Figure 31. View of the asset’s organization at moment of the release of the version 2.0.0 103

Figure 32. Asset’s page in the Unity Asset Store after the release of the version 1.4.3 105

Figure 33. Downloads and users of the asset over time. .. 112

VIII Reduction of the Workload in Unity

TABLES INDEX

Table 1. Most requested features with it’s expected monthly usage, workload reduction in hours, rate of

applicable projects, calculated payoff, implementation difficulty (development time) and calculated value.

As greener a cell is, the more exceptionally good the feature is, and the reddish a cell is, the worse the

feature is.. 48

Introduction 9

1 INTRODUCTION

Back in January 2020, the idea of creating an asset that added most of the features that

had been found missing in Unity during the development of multiple projects such as

“Drink & Play” and multiple university projects was born.

That asset included some of the most commonly needed features across the projects

such as:

- Automatic installation of the Quick Search package.

- Ability to disable the Warning C606491.

- Improved Debug class to be able to debug IEnumerable objects.

- A class to be able to create pools easily.

- A way to animate Transform and RectTransform components through the

inspector and scene objects.

- A class to generate random numbers with self-explanatory methods and

parameters in addition to some ways of generating random results typically used

in such as pseudo-randomness.

- Extensions for the classes Component, Float, GameObject, ICollection,

IEnumerable, Int, LayerMask, RectTransform, String, Transform and Vector.

- Additional shortcuts to clean the console, save the project and the scene at the

same time, ...

After developing most of the features, the asset containing them was published in the

Unity Asset Store2 under the name of “Essentials”. That asset can be found in the

following link: https://assetstore.unity.com/packages/slug/161141

However, this asset only contemplated personal demands of features that were found

missing in Unity. This was found very selfish by the developer itself, so the idea of

1 Very common in Unity projects because variables might be defined through code but initialized in the

inspector
2 “Asset Store”, “Unity Asset Store” and “Store” might be used interchangeably, referring to the Unity Asset

Store.

https://assetstore.unity.com/packages/slug/161141

10 Reduction of the Workload in Unity

updating the asset was born. This updated would try to implement features requested by

the community.

In addition, the intent of making the features feasible for most of the projects made with

Unity grew up. So, that was a thing to be considered alongside the fact of making them

feel as seamless as possible with the Unity platform and API.

Objectives 11

2 OBJECTIVES

2.1 Developing tools to reduce the amount of work in most

Unity projects

The main objective of this final year project is to develop an asset that would work as

a set of tools and features that the average developer would most likely need in

most of the projects made with Unity to reduce the workload as much as possible.

2.1.1 Finding the best metrics to evaluate each feature

To achieve the main objective of developing an asset capable of reducing the workload

in the majority of projects, a protocol to find and prioritize needed features and tools

must be designed and created.

This protocol should end up giving a value for each feature that would be used to sort the

different features based on their worth. It must help to organize them depending on the

impact related to their implementation.

2.2 Secondary objectives

The main goal of reducing the amount of work in most Unity projects is desired to be

achieved following secondary objectives that would increase the value of the asset:

2.2.1 Usability

Usability is the “extent to which a system, product or service can be used by specified

users to achieve specified goals with effectiveness, efficiency and satisfaction in a

specified context of use” (International Organization for Standardization [ISO], 2018, sec.

3.1.1).

12 Reduction of the Workload in Unity

To make the asset effective, efficient and satisfactory, it has been chosen to try to

integrate it seamlessly in the Unity Software following their internal guidelines and

imitating their tools, organization, …

In addition, as many integrated tutorials, tooltips, help elements, ... would be used

alongside the most self-explanatory labelling found for everything.

2.2.2 Good software design practices

With the objective of facilitating as much as possible, the development, maintenance and

upgradability of the asset, using the best coding practices as frequently as possible,

becomes a secondary objective.

2.2.3 Demos

In addition to the development of the asset, some demos are going to be developed.

Those demos are going to have multiple objectives:

● Proving that the asset can be used in different scenarios.

● Showing how to implement and use the asset in a Unity project.

● Showing that, indeed, implementing the asset reduces the workload in numerous

ways.

● Increasing the usability by having examples to learn from.

References 13

3 REFERENTS

Despite not having found an asset dedicated to integrate different types of features

missing in the Unity platform, there are many assets that focus in just one feature but do

some things pretty well and a lot can be learnt from them, so some of their features can

be imitated in the developed asset:

- Pooling:

- Multi Object Pooler: This asset allows the user to control multiple types of

objects in the same pool and configuring the pool through the inspector. It

can be found in the following link:

https://assetstore.unity.com/packages/tools/integration/multi-object-pooler-

130165

- Ultimate Pooling: It is a very user-friendly asset that allows the user to have

a lot of control on their pools with things like the prewarming of the pool with

the number of objects spawned per frame while keeping the simplicity and

ease of use in mind. It can be found in the asset store using this link:

https://assetstore.unity.com/packages/tools/ultimate-pooling-64950

- Component Animations:

- DOTween Pro: It allows the user to create animations for certain

characteristics of certain components through the inspector without the

need of using Unity’s animation manager. However, it only allows you to do

certain types of animations for specific elements. This asset can be found

through this link: https://assetstore.unity.com/packages/tools/visual-

scripting/dotween-pro-32416

- Increase of the ease of use:

- Playmaker: Makes programming way more user-friendly for non-specialized

users by adding a visual scripting tool. This tool includes a guided tour to

get familiarized with it, templates that give you useful parts of code that you

https://assetstore.unity.com/packages/tools/integration/multi-object-pooler-130165
https://assetstore.unity.com/packages/tools/integration/multi-object-pooler-130165
https://assetstore.unity.com/packages/tools/ultimate-pooling-64950
https://assetstore.unity.com/packages/tools/visual-scripting/dotween-pro-32416
https://assetstore.unity.com/packages/tools/visual-scripting/dotween-pro-32416

14 Reduction of the Workload in Unity

will not need to create, high customization and extensive documentation. It

is published in the Asset Store under this link:

https://assetstore.unity.com/packages/tools/visual-scripting/playmaker-368

- Behavior Designer - Behavior Trees for Everyone: An easy way to create

and manage behaviour trees with a visual editor instead of through code

but imitating the API from MonoBehaviour that most users are already

familiarized with. It can be found in the following link:

https://assetstore.unity.com/packages/tools/visual-scripting/behavior-

designer-behavior-trees-for-everyone-15277

- Visual State Machine: This asset makes creating state machines very easy

without using any code at all if not wanted. It follows the same aesthetics

from the tools created by Unity Technologies like the Animator Controller

so, interacting with it is straightforward if you already are used to Unity’s

integrated tools. This asset can be found through this link:

https://assetstore.unity.com/packages/tools/visual-scripting/visual-state-

machine-157252

- Discourse: Allows to the users a way to create non-linear dialogues,

cutscenes and manage events through a visual editor that tries to be as

clear and easy to use as possible. Additionally, it supports localization and

has invested to try to make the errors made by the user as solvable as

possible with a full undo system. It is found in the following link:

https://assetstore.unity.com/packages/tools/visual-scripting/discourse-

146948

- Magic Light Probes: This asset places light probes around a desired area

without the need of any major intervention from the user. Doing so, the time

dedicated to place the needed light probes is reduced by a huge amount.

This tool can be found in the Asset Store under this link:

https://assetstore.unity.com/packages/tools/utilities/magic-light-probes-

157812

https://assetstore.unity.com/packages/tools/visual-scripting/playmaker-368
https://assetstore.unity.com/packages/tools/visual-scripting/behavior-designer-behavior-trees-for-everyone-15277
https://assetstore.unity.com/packages/tools/visual-scripting/behavior-designer-behavior-trees-for-everyone-15277
https://assetstore.unity.com/packages/tools/visual-scripting/visual-state-machine-157252
https://assetstore.unity.com/packages/tools/visual-scripting/visual-state-machine-157252
https://assetstore.unity.com/packages/tools/visual-scripting/discourse-146948
https://assetstore.unity.com/packages/tools/visual-scripting/discourse-146948
https://assetstore.unity.com/packages/tools/utilities/magic-light-probes-157812
https://assetstore.unity.com/packages/tools/utilities/magic-light-probes-157812

References 15

- Editor

- Odin - Inspector and Serializer: Allows the programmers to easily create

custom windows and inspectors. It follows the same patterns as the default

attributes provided by Unity to create custom inspectors, but it extends the

functionality to a whole other level. The asset can be found here:

https://assetstore.unity.com/packages/tools/utilities/odin-inspector-and-

serializer-89041

- Asset Usage Finder: Even though it is a very useful tool to keep any

project’s assets usages under control, it is really impressive how they

managed to give the wanted information and tools seamlessly just by the

click of one button. The asset can be found using this link:

https://assetstore.unity.com/packages/tools/utilities/asset-usage-finder-

59997

- Enhanced Hierarchy 2.0: Provides and allows the edit of information

(usually found in the console or in the inspector) regarding each

GameObject in the Hierarchy, making it easier to work with. It can be found

through this link:

https://assetstore.unity.com/packages/tools/utilities/enhanced-hierarchy-2-

0-44322

- Asset Cleaner PRO - Clean | Find References: This asset does a really well

job of giving the most basic information in a very elegant and seamless way.

With the tool activated, the needed data is provided, and the finding of

unused assets is straightforward thanks to the colour coding applied to the

default Unity’s Project window. It can be found in the Asset Store following

this link: https://assetstore.unity.com/packages/tools/utilities/asset-cleaner-

pro-clean-find-references-167990

- Scene tools

- Grabbit - Editor Physics Transforms: This asset addresses the lack of any

tool in Unity that allows the placement of objects in the scenes using

physics. It makes it very seamlessly and without any extra work required by

https://assetstore.unity.com/packages/tools/utilities/odin-inspector-and-serializer-89041
https://assetstore.unity.com/packages/tools/utilities/odin-inspector-and-serializer-89041
https://assetstore.unity.com/packages/tools/utilities/asset-usage-finder-59997
https://assetstore.unity.com/packages/tools/utilities/asset-usage-finder-59997
https://assetstore.unity.com/packages/tools/utilities/enhanced-hierarchy-2-0-44322
https://assetstore.unity.com/packages/tools/utilities/enhanced-hierarchy-2-0-44322
https://assetstore.unity.com/packages/tools/utilities/asset-cleaner-pro-clean-find-references-167990
https://assetstore.unity.com/packages/tools/utilities/asset-cleaner-pro-clean-find-references-167990

16 Reduction of the Workload in Unity

the user. This asset can be found though this Asset Store’s link:

https://assetstore.unity.com/packages/tools/utilities/grabbit-editor-physics-

transforms-182328

- Commonalities

Some assets provide elements that are common in a lot of video game mechanics

and designs. Creating them in a generic way can significantly reduce the amount

of work because the project programmer would only need to do the final tweaks

instead of the whole system. Some examples can be found in the following assets

with links:

- Inventory: https://assetstore.unity.com/packages/tools/utilities/inventory-

96372

- Third Person Controller - Basic Locomotion Template:

https://assetstore.unity.com/packages/templates/systems/third-person-

controller-basic-locomotion-template-59332

- Camera Controller:

https://assetstore.unity.com/packages/tools/camera/camera-controller-

13768

Additionally, hundreds of artistic assets can be found in the Unity Asset Store that can be

used as reference or base for many projects’ assets. They tend to have customization

available to make each integration unique, but they all can be used directly out of the box.

Some of the most liked and widely usable assets are:

- VFX

- Easy Performant Outline 2D | 3D (URP / HDRP and Built-in Renderer) v3.0:

https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-

effects/easy-performant-outline-2d-3d-urp-hdrp-and-built-in-renderer-v3--

157187

https://assetstore.unity.com/packages/tools/utilities/grabbit-editor-physics-transforms-182328
https://assetstore.unity.com/packages/tools/utilities/grabbit-editor-physics-transforms-182328
https://assetstore.unity.com/packages/tools/utilities/inventory-96372
https://assetstore.unity.com/packages/tools/utilities/inventory-96372
https://assetstore.unity.com/packages/templates/systems/third-person-controller-basic-locomotion-template-59332
https://assetstore.unity.com/packages/templates/systems/third-person-controller-basic-locomotion-template-59332
https://assetstore.unity.com/packages/tools/camera/camera-controller-13768
https://assetstore.unity.com/packages/tools/camera/camera-controller-13768
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/easy-performant-outline-2d-3d-urp-hdrp-and-built-in-renderer-v3--157187
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/easy-performant-outline-2d-3d-urp-hdrp-and-built-in-renderer-v3--157187
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/easy-performant-outline-2d-3d-urp-hdrp-and-built-in-renderer-v3--157187

References 17

- Stylized Water 2:

https://assetstore.unity.com/packages/vfx/shaders/stylized-water-2-

170386

- Advanced Dissolve:

https://assetstore.unity.com/packages/vfx/shaders/advanced-dissolve-

111598

- Lux Water: https://assetstore.unity.com/packages/vfx/shaders/lux-water-

119244

- Animations

- Basic Motions PRO Pack:

https://assetstore.unity.com/packages/3d/animations/basic-motions-pro-

pack-157744

- RPG Character Mecanim Animation Pack:

https://assetstore.unity.com/packages/3d/animations/rpg-character-

mecanim-animation-pack-63772

- Mega Animations Pack:

https://assetstore.unity.com/packages/3d/animations/mega-animations-

pack-162341

- Textures and materials

- AllSky Free - 10 Sky / Skybox Set:

https://assetstore.unity.com/packages/2d/textures-materials/sky/allsky-

free-10-sky-skybox-set-146014

- Cartoon Town Materials Pack:

https://assetstore.unity.com/packages/2d/textures-materials/cartoon-town-

materials-pack-162934

https://assetstore.unity.com/packages/vfx/shaders/stylized-water-2-170386
https://assetstore.unity.com/packages/vfx/shaders/stylized-water-2-170386
https://assetstore.unity.com/packages/vfx/shaders/advanced-dissolve-111598
https://assetstore.unity.com/packages/vfx/shaders/advanced-dissolve-111598
https://assetstore.unity.com/packages/vfx/shaders/lux-water-119244
https://assetstore.unity.com/packages/vfx/shaders/lux-water-119244
https://assetstore.unity.com/packages/3d/animations/basic-motions-pro-pack-157744
https://assetstore.unity.com/packages/3d/animations/basic-motions-pro-pack-157744
https://assetstore.unity.com/packages/3d/animations/rpg-character-mecanim-animation-pack-63772
https://assetstore.unity.com/packages/3d/animations/rpg-character-mecanim-animation-pack-63772
https://assetstore.unity.com/packages/3d/animations/mega-animations-pack-162341
https://assetstore.unity.com/packages/3d/animations/mega-animations-pack-162341
https://assetstore.unity.com/packages/2d/textures-materials/sky/allsky-free-10-sky-skybox-set-146014
https://assetstore.unity.com/packages/2d/textures-materials/sky/allsky-free-10-sky-skybox-set-146014
https://assetstore.unity.com/packages/2d/textures-materials/cartoon-town-materials-pack-162934
https://assetstore.unity.com/packages/2d/textures-materials/cartoon-town-materials-pack-162934

Theoretical Framework 19

4 THEORETICAL FRAMEWORK

4.1 How to choose which features to implement

A way to prioritize features must be selected so the work done ends up having the most

significant value possible with the time and resources available for this project.

One of the best options might be the PICK chart. Originally developed by Lockheed Martin

(George, 2003, p. 292-293) it “helps a team organize and prioritize its solution ideas by

separating them into four categories: Possible, Implement, Challenge, or Kill” depending

on their difficulty/investment and their payoff.

The idea behind it is that you should focus on those ideas with as much payoff as possible

with less investment needed.

Figure 1. Basic layout of the PICK chart.

20 Reduction of the Workload in Unity

At the end, the best ideas with more value would be the ones that have the highest payoff

for the lowest investment. In other words, the value (or efficiency) of each feature can be

calculated by dividing the payoff between the investment as follows:

𝑣𝑎𝑙𝑢𝑒 =
𝑝𝑎𝑦𝑜𝑓𝑓

𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

Badiru & Thomas (2013, p. 6-8) express that the PICK chart can be used to evaluate the

efficiency, effectiveness and productivity among other metrics in a very similar way that

the one proposed to calculate the value of each feature. For instance, a way to calculate

efficiency is:

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑜𝑢𝑡𝑝𝑢𝑡

𝑖𝑛𝑝𝑢𝑡

4.1.1 Calculating the payoff and the investment

As exposed by Badiru & Thomas (2013, p. 3) ‘the “PICKing” technique is normally done

subjectively by a team of decision makers through a group decision process. This can

lead to bias and protracted debate of where each item belongs on the chart.’

However, some elements can help determine the difficulty and the payoff of each feature.

Moran & Riley (2014 p. 1) list some of the factors that could contribute to the success of

each feature:

- Scope of control

- Scope of influence

- Cost

- Time

- Staff availability

- Available data

- Ease of gathering data

Other sites (TXM Lean Solutions, 2020) recommend asking a question to the team to help

clarify the idea, its scope and difficulty such as:

Theoretical Framework 21

- Have we done something similar before?

- Have we seen something similar at another company?

- Is this known technology?

- Can we implement it ourselves?

- Do we need to rely on another department to make this work?

At the end, no objective way to determine the difficulty and payoff of each feature has

been found. So, to determine their values, the subjective knowledge and experience is

going to be a main component during the use of the following approaches to determine

the payoff and the difficulty of each one of them:

Payoff: Due to the fact that the main objective of the asset is to reduce the workload in

Unity, in the end, what matters the most, is the time that each feature saves to the

developer that, if it was missing, would have to implement it by himself or manually do the

work.

Difficulty: This project is only going to be built up by one person, so no team issues have

to be addressed, but it has to be considered that all the knowledge needed is going to be

coming from previous projects or gathered during the development of each feature. So,

at the end, the difficulty to develop each feature is going to be mainly related to the time

of development and the gathering of the information needed.

22 Reduction of the Workload in Unity

4.2 Unity Software

According to Unity Technologies (2021) “Unity’s real-time 3D development platform lets

artists, designers and developers work together to create amazing immersive and

interactive experiences”.

Unity is one of the most popular Game Engines in 2021 (Schardon, 2021) and “has

become a staple of the indie game industry”. Additionally, she states:

The engine is not only well-suited for both 2D and 3D games of any type, but it is

also a popular choice for VR and AR development as well, thanks to many

companies and developers creating convenient SDKs for the engine. Beyond this,

Unity also has a sizeable community, with an active Asset Store with both free and

pay-to-use assets at your fingertips.

Additionally, Axon (2016) wrote that “according to Unity, more than 6 million registered

developers use the platform, and 770 million gamers enjoy Unity-made titles” in 2016.

What is different about Unity?

As explained by Axon (2016), Unity Labs EVP Sylvio Drouin commented that some of

that popularity might be thanks to the fact that before Unity, most of the game engines

that existed were usually engines where you had to start coding in C++ and call APIs and

build the scaffolding yourself. That made them really targeted at engineers that

understand what they are doing, while Unity is very asset driven.

4.2.1 Unity guidelines

It has not been found any document about what the internal guidelines for Unity’s API

and tools are.

So, instead, the asset will have to follow the Submission Guidelines made by Unity for

any asset that wants to be published in the Unity Asset Store.

https://unity3d.com/asset-store/sell-assets/submission-guidelines

Theoretical Framework 23

Those instructions do not only explain how the asset page in the store should be created

or which contents to include but also how to name the folders, organize the editor

extensions, …

The most applicable guidelines for the content and its organization for the asset according

to the Submission Guidelines by Unity in 2020 found in https://unity3d.com/asset-

store/sell-assets/submission-guidelines might be the following ones:

Content Organization

- Packages should be nested under a folder with either the publisher name, or

package name as the title, except for the folders outlined in the Special Folders

and Script Compilation Order documentation3.

- The assets should be properly sorted into folders with English titles depending on

their type (Mesh/Script/Material/etc).

Figure 2. Example of an organized and properly named folders

- All duplicate, unused or redundant files must be removed from the project before

submitting.

3 The documentation can be found in the URL:

https://docs.unity3d.com/Manual/ScriptCompileOrderFolders.html.

https://unity3d.com/asset-store/sell-assets/submission-guidelines
https://unity3d.com/asset-store/sell-assets/submission-guidelines
https://docs.unity3d.com/Manual/ScriptCompileOrderFolders.html

24 Reduction of the Workload in Unity

- All files must follow a consistent naming convention and their names need to

represent the content they are providing.

- File paths for assets should be kept under 140 characters.

Documentation:

- All projects that require information on how to set up and properly utilize are

required to have local documentation in English and should assume users have a

basic understanding of the environment.

- Documentation file types must be in .txt, .pdf, .html or .rtf file types. In editor

tutorials, inline documentation, and tooltips are appropriate as well.

- Shader documentation must explain each shader property. Do not assume that the

property names alone are enough for the user to figure out what they do.

- If the product has contents to show off, they should be displayed in a demo scene.

If the project includes a collection of assets, it must include a scene that showcases

all their assets laid out in a grid or continuous line.

Files

- Preferences, settings or supplemental files for another Asset Store product must

be nested in a .unitypackage file type.

- Files of type .zip or .rar can only be used for files that do not natively function in

the Unity editor. (I.e. Blender, HTML Documentation, Visual Studio Projects, etc.)

- Make sure all the assets are as optimized as they can be. The size limit for an

asset for the Asset Store is 6GB.

Generic Art Content

- The package must hold a consistent artistic style.

- The content submitted should display a certain degree of professional design,

construction and be ready to be used in a development pipeline.

- Mesh assets should be in files of type .fbx or .obj. Procedural or other types of

meshes generated at runtime are acceptable as well.

Theoretical Framework 25

- All visible meshes are required to have a paired set of textures and materials

assigned to them. In addition to a corresponding prefab set up with all variations

of the texture/mesh/material that is being provided and with a collider component

that fitting the mesh.

- Large environments or scenes must be broken up into individual meshes.

- Prefabs must have their position/rotation set to zero, and the scale set to 1.

- All meshes must have a local pivot point positioned at the bottom center of the

object, consistently in a corner of any modular objects, or where the object would

logically pivot/rotate/animate.

- All meshes should be rotated to have their positive Z facing forward.

- Meshes need to be at 1 Unit : 1 Meter scale.

- Assets must not have an unreasonably excessive mesh density. Additionally,

photoscanned data must be retopologized and optimized. No meshes that are the

direct result of scans are allowed.

- Assets must not have their UV’s automatically unwrapped.

Rigs

- Character models must be weighted to an accompanying rig. The rig can either be

set up with Unity’s Mecanim system or can include your own animations.

- When set to animations, rigs should not show any obvious creases or unusual

deformations.

Animations

- Bipedal animations should be ready to use with Unity’s default “Humanoid” avatar.

- Projects of non-Bipedal animations need to include a demonstration mesh with a

well-documented rig breakdown so that users can create meshes designed for the

animations.

- Animations need to be sliced and named. Single long animation clips are not

allowed.

- Any animations that are developed from mocap data need to be cleaned up into

sliced and usable animations. No raw mocap data is allowed.

26 Reduction of the Workload in Unity

- Animations should have fluid movement without any jarring transitions.

- All animation assets should have a video demonstration showcasing the included

animations.

- Animations for unique characters should be contained in their own prefab.

Textures and Materials:

- Texture files need to be in a lossless compression format such as .png, .tga, or

.psd.

- Any PBR4 package or that is using the Standard Shaders must include at least an

albedo, normal, metallic (or specular) and smoothness texture map.

- Tileable textures must tile without any seams or obvious edges.

- Maps with an alpha channel need to be paired with a material that can read said

alpha.

- Normal maps need to be marked as a “Normal Map” in the import settings.

- Content intended to be run on mobile or lower-end hardware should have atlased

textures in order to reduce performance impact.

- Assets should not have an excessive number of materials assigned to them.

- SBSAR5 and other procedural materials need documentation or a demo scene

showcasing the parameters included.

- Dimensions of textures should be pixel counts that are a power of 2 when

appropriate.

- Materials should include all appropriate textures and be properly set up.

Sprites

- All sprite sheets must be imported with the “Sprite” import settings.

- Sprites need to be properly sliced and named using the import settings.

4 Information regarding how to work with Physically Based Rendering (PBR) can be found in the following

blog post: https://blogs.unity3d.com/2015/02/18/working-with-physically-based-shading-a-practical-
approach/

5 SBSAR files are exported graphs from Substance Designer

https://blogs.unity3d.com/2015/02/18/working-with-physically-based-shading-a-practical-approach/
https://blogs.unity3d.com/2015/02/18/working-with-physically-based-shading-a-practical-approach/

Theoretical Framework 27

- Sprite animations need to be spliced, named and set up as proper clips before

submission.

GUI Packs

- Submissions of GUI packs must include a functional demonstration scene that

showcases all of the components being usable.

- GUI components need to have their elements separated and named either before

import or through our sprite editor settings.

Particle Systems

- Particle systems should be saved as a prefab to easily drag and drop into their

scene.

Scripts

- Scripts should not throw any compiler or generic errors. Any potential errors must

be properly caught and presented to the user through the debug log.

- All submitted code must be commented in English and readable with no

spelling/grammatical errors.

- Functions and variables should be named appropriately.

- Scripts must include namespaces within which all named entities and identifiers

must be declared.

- Assets that support Android builds should target 64-bit architecture.

Editor Extensions

- Editor extension file menus must be placed under an existing entry. If no existing

menus are a good fit, you can place it under a custom menu titled "Tools" trying to

keep the editor clean and organized.

28 Reduction of the Workload in Unity

Figure 3. Example of an ideally nested Editor Extension

- Undo operations must be supported6.

- If a Server-Based Plugin is used, any new databases with necessary tables must

be automatically populated.

Complete & Template Projects

- Complete and Template Projects should be designed as instructional, tutorial or

framework products.

- Complete project’s documentation must include in-depth information about how

the project is designed and how users can edit and expand on it, not only how to

run the project.

- Products should offer some unique aspect to our development community and

should not violate any copyright protections.

Audio

- Audio files must be normalized.

- Audio files must play properly inside the Unity inspector and supported Unity audio

formats7 should be the only ones existing.

- Using a lossless format for audio files such as .wav files is strongly recommended.

To end, all content on the Asset Store is required to operate within the Unity Editor.

6 Information regarding the “Undo Support” can be found in Unity documentation through the following link:

https://docs.unity3d.com/ScriptReference/Undo.html
7 For more information on supported formats, see Unity's Audio File Documentation in the following link:

https://docs.unity3d.com/Manual/AudioFiles.html

https://docs.unity3d.com/ScriptReference/Undo.html
https://docs.unity3d.com/Manual/AudioFiles.html

Theoretical Framework 29

Additionally, a good practice would be to try to write the code structured and written in a

way that tries to imitate as much as possible the default Unity’s API coding conventions.

To do so, the following resources have been studied:

- Microsoft’s C# Coding Conventions (C# Programming Guide):

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-

program/coding-conventions

- Documentation by Taranov, Konstantin: https://github.com/ktaranov/naming-

convention/blob/master/C%23%20Coding%20Standards%20and%20Naming%2

0Conventions.md

- The public GitHub repositories of Unity: https://github.com/Unity-Technologies

After studying the previous resources, the following rules have been collected considering

the relation between Unity and C#8:

Layout

- You should declare a variable, method or function before it can be referenced by

other components in the same script.

- Write only one statement per line.

- Write only one declaration per line.

- Indent continuation lines with one-tab stop (four spaces).

- Use parentheses to make clauses in an expression apparent.

- Add at least one blank line between method definitions and property definitions.

- Do use vertically aligned curly brackets.

Commenting

- Place the comment on a separate line, not at the end of a line of code.

- Begin comment text with an uppercase letter.

8 Extended information regarding the rules and examples can be found in the following document:

https://docs.google.com/document/d/1uD-zW-EXkl-
iDXaCJ_Jt5BtdasZQeKCkTGIV_4RivIs/edit?usp=sharing

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://github.com/ktaranov/naming-convention/blob/master/C%23%20Coding%20Standards%20and%20Naming%20Conventions.md
https://github.com/ktaranov/naming-convention/blob/master/C%23%20Coding%20Standards%20and%20Naming%20Conventions.md
https://github.com/ktaranov/naming-convention/blob/master/C%23%20Coding%20Standards%20and%20Naming%20Conventions.md
https://github.com/Unity-Technologies
https://docs.google.com/document/d/1uD-zW-EXkl-iDXaCJ_Jt5BtdasZQeKCkTGIV_4RivIs/edit?usp=sharing
https://docs.google.com/document/d/1uD-zW-EXkl-iDXaCJ_Jt5BtdasZQeKCkTGIV_4RivIs/edit?usp=sharing

30 Reduction of the Workload in Unity

- End comment text with a point.

- Insert one space between the comment delimiter (//) and the comment text.

Documentation

- Use XML documentation comments instead of “simple/traditional” comments to

create a proper documentation of your code.

- The “traditional” comments are good to do some clarifications, but they should be

used to explain some parts of the code if necessary so whoever checks it, can

easily understand how it works.

General

- Do not use underscores except for variables that shouldn’t be modified directly.

For example: variables used to avoid infinite loops in property setters.

- Avoid using abbreviations except if they are commonly used as names, such as

Id, Xml, Ftp, Uri, UI, …

- Do not use Screaming Caps (all capital).

- Do use predefined type (int, string, bool) names instead of system type names like

Int16, Single, UInt64, String, Boolean, …

- Do name source files according to their main classes. Exception: file names with

partial classes reflect their source or purpose, e.g. designer, generated, etc.

- Organize namespaces with a clearly defined structure. Examples:

“Company.Product.Module.SubModule”, “Product.Module.Component”, ...

- When using PascalCasing or camelCasing for words/abbreviations of 1 or 2 chars,

they should all be uppercase. Ex: UIControl, FtpTransfer.

- Do not create names which are not clearly differentiated (avoid having the name

“example” and “Example”).

- Use singular or plural depending on the quantity of elements you are working with.

Ex: Player (singular, a single player), PlayersManager (plural, manages a group of

players), Locations (plural, a group of locations), GetNearestPlayer (singular,

obtains a one player), GetPlayersInArea (plural, returns multiple players), …

- Use the “this” keyboard only if:

Theoretical Framework 31

- There is an ambiguity. Ex: this.name = name.

- You want to pass a reference to the current instance.

- You want to call an extension method on the current instance

Strings

- Try to use string interpolation to concatenate short strings.

- To append strings in loops, especially when you are working with large amounts

of text, use a StringBuilder object alongside its Append method.

Variables and fields

- Do not rely on the variable name to specify the type of the variable (Hungarian

notation9 should not be used).

- Use camelCase (even if they have properties/accessors).

- Make all of them private by default.

- Don’t show any variable through the inspector if it is not necessary.

- If a variable has to be public use Auto-Implemented Properties10 for its definition

to limit as much as possible the interaction with it11.

- Don’t modify the accessibility levels for a variable just to change its visibility

through the inspector.

- Instead of making a variable public only so you can see it in the inspector,

use the SerializeFIeld modifier.

- Instead of making a variable private only to hide it in the inspector, use the

NonSerialized modifier or the HideInInspector modifier.

- Use meaningful names that clearly state what the variable stores.

- Declare all member variables, fields, and attributes at the top of a class, with static

variables at the very top.

9 Hungarian notation: an identifier naming convention that adds a prefix to the identifier name to indicate

the functional type of the identifier (Simonyi, 2006).
10 Information regarding the auto-implemented properties can be found in Microsoft’s C# documentation

through the following link: https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-
and-structs/auto-implemented-properties
11 Note: If the variable has to be visible through the inspector, you’ll not be able to use Auto-Implemented

Properties, so don’t use it in that case.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/auto-implemented-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/auto-implemented-properties

32 Reduction of the Workload in Unity

Statics

- Call static members by using the class name. Ex: ClassName.StaticMember

Singleton

- Use “instance” as name for the field that refers to the singleton instance.

- Usually, if the class is a MonoBehaviour, you might want to initialize the

singleton field in the “Awake” method or, if it is not, using auto-implemented

properties to get access to it whenever is needed.

- Always check if the singleton field is null before setting a value in it. If it is

not, handle the error.

Operators

- Use “&&” instead of “&” and “||” instead of “|”.

Object creation

- Create object constructors to be sure that all mandatory variables are set when an

object of that class is instantiated.

Class

- Use PascalCasing for the name. Ex: NameOfClass.

- Use noun or noun phrases to name a class (Employee, SpawnLocation,

Document, ...).

Interface and abstract classes

- Interface names are a noun (phrases) or adjectives.

- Do prefix interfaces with the letter I. (IShape, IShapeCollection, IGroupable,

...).

Methods

- Use PascalCasing for the name. Ex: NameOfMethod.

Theoretical Framework 33

- Use meaningful names for the method that clearly explain the result of the

execution of the method. Ex: GetCurrentPlayer().

Arguments and local variables

- camelCasing for method arguments and local variables. Ex: itemCount.

Events

- Use “Action<>” instead of creating a “delegate” and then attaching it to an “event”

to simplify the code.

- To name the events, add “On” at the beginning of the event’s name. Example:

OnAdLoaded, OnTimerUp.

- If a method is going to be dedicated just to handle an event, compose his name

with the name of the event and add at the end the “Handler” word. Example:

OnAdLoadedHandler, OnTimerUpHandler.

Enums

- Use PascalCase.

- Do use singular names for Enums with an exception for the bit field Enums.

- Do not explicitly specify a type or values of Enums (except bit fields).

- Do not use an "Enum", "Flag" or “Flags" suffixes in Enum type names.

34 Reduction of the Workload in Unity

4.3 Good Software Design Practices

Sommerville (2004, pp. 12–13) identified a set of generalized attributes not concerned

with what a program does, but how well it does it: maintainability, dependability, efficiency

and usability.

Having decided those as the main goals of the objective of applying good software design

practices, the design of the software must pursue their inclusion.

The inclusion of maintainability can be approximated understanding maintainability as

the capacity to provide software maintenance, which has been defined by the

International Organization for Standardization [ISO] (2006, p.4) as the totality of activities

required to provide cost-effective support to a software system (those activities are

performed during the pre-delivery stage as well as the post-delivery stage).

According to the International Electrotechnical Commission (2015), “Dependability

includes availability, reliability, recoverability, maintainability, and maintenance support

performance, and, in some cases, other characteristics such as durability, safety and

security”. So, it seems logical to assume that incrementing the presence of those aspects

should turn into an increase in the level of dependability.

To increment the efficiency, the objective should be to increase “the quality of doing

something well and effectively, without wasting time, money, or energy” (Longman

Dictionary of Contemporary English Online, n.d.)).

Usability is not only needed to achieve the best design practices in the final product, but

it is by itself one of the secondary objectives. So, if an increase in usability is required,

the product should be able to be used by specified users to achieve specified goals with

effectiveness, efficiency and satisfaction in a specified context of use (International

Organization for Standardization [ISO], 2018, sec. 3.1.1).

Finally, it might be worth mentioning one of the practices that could help achieve the

wanted attributes: modularity. If applied, the components of the asset should be coupled

as little as possible, so one feature does not rely on any other. This way, the users of the

Theoretical Framework 35

asset can remove the tools that they do not need without any trouble. In addition, making

the asset modular would allow easier upgradability, updatability and customization.

Schedule and Methodology 37

5 SCHEDULE AND METHODOLOGY

The first issue to be addressed will be finding the errors to fix in the existing asset.

After it, a study of the most important features that could be added to Unity will have to

be done.

To figure out which are the most important features missing in Unity, multiple approaches

can be used such as:

- Personal notes taken during several projects made using Unity.

- Reading the Unity Forums for anything tagged as “Feedback” or “Feature

Request”.

- Making surveys that could be shared in social networks with active Unity users

such as Twitter, Reddit, Unity Forums, Discord servers and messaging apps.

The next objective will be deciding the best metrics to evaluate the value of each possible

feature to integrate.

Once the evaluation metrics are decided, a rating of each feature will be done to find its

value.

After rating the features, they will be implemented in order from most valuable to least

valuable until there is no time left to add any of the new features or all of them are already

implemented.

In each new feature or error fix, these steps will be followed to implement them:

1. Describing the exact needs and objectives of it.

2. Investigating to try to find the most optimal way to implement it.

3. Designing the different elements that will compose it and its relations.

4. Building it.

5. Creating a test that would check its proper behaviour12.

12 The creation of a test or a demo might not be always needed if already exist a way to test it or

demonstrate it.

38 Reduction of the Workload in Unity

6. Transforming the test into a demo to serve as an example.

7. Updating the asset documentation to include information about the new feature.

During all the process, each step will be documented, and, at any point, it is possible to

go back any number of steps to improve what has been already done, or address issues

found later in the process.

At least once per month, an update of the asset including all the new changes will be

published in the Unity Asset Store.

After late May, the work on new features will stop and the latest update of the asset will

be published into the Unity Asset Store.

Afterwards, a conclusion of the thesis will be created including a critique to the

development process and the feature selection, in addition to a review of the performance

of the asset in the Unity Asset Store, including downloads, reviews and other metrics

available.

Figure 4. Gantt chart of the schedule for the different tasks and milestones of the
project.

Project Development 39

6 PROJECT DEVELOPMENT

6.1 Preliminaries

6.1.1 Finding weaknesses in the existing asset

Comparing the current version13 of the Essentials asset with the Unity guidelines found,

good software design and methodology practices and the project objectives, it has been

detected that some features are not properly aligned with the theory.

All the elements that have been found that could be modified to match the project’s

requirements are:

- The changes in configuration for the project have to be manually requested and

looked for. This ends up meaning that most of them are unknown for most of the

users who do not read the documentation.

Instead, it would be pleasant to have a window popping up right away after

installing the asset asking what configuration you want to set up for the project. In

that window, it would be interesting to have the following options:

- Installing the QuickSettings package.

- Disabling the Warning C60649.

- To debug an enumerable, you have to use the class DebugPro instead of the

default class named Debug, which would be expected.

- The Pool class should have some behaviours modified, functionality added, and

interaction methods improved in order to mimic as much as possible the usual way

to interact with a native Unity class or component. Those modifications are:

- The Pool class should be serializable/editable through the inspector.

13 The version of the asset used as the base for this project is: 1.1.13.

40 Reduction of the Workload in Unity

- The user should be able to set the parent of the spawned object with the

Spawn method.

- The Pool class should be able to instantiate a defined number of objects

per frame at its creation or when decided to increase the performance.

- The Pool class should be able to pool multiple objects at the same time,

deciding if it cycles through them in order or randomly.

- The component SimpleAnimationManager should be renamed to

ComponentAnimationManager. It better fits its current purpose, and it is more self-

explanatory.

- The component SimpleAnimationManager should have a clearer inspector

interface to increase the usability and ease of use.

- The class SimpleAnimation should be renamed to ComponentAnimation. It better

fits its intent, and it is more self-explanatory.

- The class EasyRandom should be renamed, so it starts with the word “random”,

so it is easier and more intuitive to find, so the usability is increased.

- The shortcut to clean the console should be displayed while hovering on top of the

“clean” button of the console window or in the dropdown options of the console

window itself, not in the Essentials file menu entry.

- The Essentials file menu entry should be found in an entry named “Tools”, not in

the root.

It is possible, however, that additional possible improvements might be found during the

development process of the new features or the fixing of the already detected weak

points.

Project Development 41

6.1.2 Finding the most common needs

As mentioned in the Schedule and Methodology section, in order to find as many features

missing in Unity as possible, multiple techniques have been used:

- The taking of personal notes during several projects made using Unity.

- The reading of Unity Forums posts tagged as “Feedback” or “Feature Request”.

- The sharing of surveys in social networks with active Unity users such as Twitter,

Reddit, Unity Forums, Discord servers and messaging apps.

Figure 5. Post made in the Unity Forum to ask the users of Unity which missing features
they would like to have integrated in the engine.

All the features that have been found missing using those methods are the following:

- A default template state machine.

- A way to animate Components (camera, transform, ...) without needing an

animator controller.

- A way to snap an object to the surface of any other’s mesh without leaving any

distance between their meshes.

- Ability to create folders in the Hierarchy.

- Ability to encrypt PlayerPrefs.

- Ability to merge lightmaps in additive scenes.

42 Reduction of the Workload in Unity

- After the creation of a new project, display a pop-up asking if it is wanted to enable

the automatic generation of lighting data.

- An alignment system to snap objects into grids (support for multiple types of grids

such as square, isometric, triangular, ... would be appreciated).

- An easy way to set the default import settings for different types of assets.

- An integrated .gitignore in the Unity projects or a way to create it natively.

- An orientative folder structure automatically created for the project.

- Asking for the shortcut to trigger the "quick search" after installing the package.

- Audio manager component able to easily handle multiple audio clips.

- Being able to copy and paste the values of a Transform Component world cords

even if the object has a parent object.

- Being able to display the console in the game window/screen (an in-game

console).

- Being able to set objects as not editable in the hierarchy of the scene.

- C# classes integrating common needs (such as a "rotator" that could rotate

between different outputs every time a new one is requested).

- Default custom renderers.

- Default existing presets for components like the camera, canvas, ...

- Default shaders and particles that could be used directly or as template.

- Easy way to animate ragdolls and inverse kinematics.

- Easy way to save C# objects in a JSON format (in a similar manner that

PlayerPrefs work).

- Extensions for components and classes like the Transform or the Vector.

- Improved inspector tools to easily create custom windows and inspectors.

- In the game window, alongside the current predefined aspect ratios, display other

aspect ratios labelled as commonly used devices.

- In the scene view, being able to select objects behind other objects.

- Integrated networking system.

- Lorem ipsum text generator for the UI components with text fields.

- Straightforward way to download data with HTML requests.

Project Development 43

- Templates for character controllers of different types (like first person, third person,

...).

- Visual Scripting system.

However, not all of them are going to be considered to integrate in the asset. A filtering

has been made, removing those that would transform the objective product from a multi-

tool asset to a single-feature asset due to the lack of time and how much they would take

to be properly created (sometimes because of the amount of work needed to properly

incorporate them or the lack of knowledge on the topic).

The features that will not get considered because they fall into that category are:

- Ability to merge lightmaps in additive scenes.

- Improved inspector tools to easily create custom windows and inspectors14.

- Integrated networking system.

- Visual Scripting system.

6.1.3 Deciding the metrics

The payoff and difficulty of each feature has to be calculated in order to prioritize them

appropriately.

To keep the project aligned with its main objective, time, must be directly related to the

rating of each feature’s payoff. The payoff value must be bigger as more time each feature

saves from the average Unity user.

The implementation difficulty of each feature can be also related to time. However, in this

case, it will be related to how much time it takes to implement it.

14 Even though this feature could be at least partially integrated, it has been decided to exclude it since

many assets with it as the main objective already exist (such as “Odin - Inspector and Serializer”).

44 Reduction of the Workload in Unity

Payoff

To calculate the payoff value of each of the noted features, a poll has been made asking

Unity users about how many projects they carry on Unity, the working sessions and hours

that they spend using the software15.

Having the usage metrics about Unity, an approximation can be done in order to guess

how much the average user would use each of the new features and, therefore, calculate

the payoff of each one of them. Some information obtained through the poll suggested

that the median of projects created every year is 3 (0.25 per month), the median of the

monthly working sessions are 5 and the median of the monthly hours using the software

is 22.5 (4 hours per session according to the median).

Knowing that information, some assumptions can be done regarding how many times per

month a tool or feature would be used depending on when it would be employed:

- Once per project: 0.25 times per month.

- Once in every working session: 5 times per month.

- Every hour: 22.5 times per month.

The amount of time per month a feature is expected to be utilized has been used as the

payoff of itself. To calculate it, 3 metrics have been used:

- Average monthly usage: How many times a month the feature could replace the

work of a user trying to work around the missing feature or by trying to create the

feature by itself (if feasible).

- Expected workload reduction: Every time the feature is used, how much time

has been saved from trying to work around the lack of its existence or creating it.

- Rate of projects where it is usable: The percentage of projects that this feature

could be useful for.

Multiplying all the values, the payoff is obtained, and the only remaining thing to be able

to use a PICK chart to prioritize the features is the investment needed to develop and

15 The detailed results of the poll can be consulted in the annexes and in the following document:

https://drive.google.com/file/d/1yUUC7OFYoAk5rk5e0w4GvJEhD9MCnPdh/view?usp=sharing

https://drive.google.com/file/d/1yUUC7OFYoAk5rk5e0w4GvJEhD9MCnPdh/view?usp=sharing

Project Development 45

integrate it in the asset. To get it, the personal experience and knowledge on the topics

has been used to try to get the most realistic approximation.

Difficulty

To calculate the difficulty of the implementation of each feature, as explained earlier in

the theoretical framework, the time of development and the gathering of the information

needed are going to be the main point.

So, wanting to approximate as accurate as possible the amount of time needed to

implement each one of them, personal experiences from past Unity projects, personal

knowledge about the needed topics and personal time-availability is going to be used.

46 Reduction of the Workload in Unity

6.1.4 Rating the features

It is important to remark that all the values for each metric have been decided taking into

account the personal experience related to the implementation of those features, the

known data regarding the usage of Unity, the personal knowledge of the software and the

personal availability to work on the project.

After doing so, these were the considered possible features to integrate that the people

most frequently requested with their respective analysis:

Formal Name E
x
p
e
c
te

d
 m

o
n
th

ly
 u

s
a
g

e

E
x
p
e
c
te

d
 w

o
rk

lo
a
d
 r

e
d
u
c
ti
o
n

(h
o
u
rs

)

E
x
p
e
c
te

d
 r

a
te

 o
f
p
ro

je
c
ts

 w
h
e
re

 i
t

is
 u

s
a
b

le

C
a
lc

u
la

te
d

 P
a
y
o

ff

E
x
p

e
c
te

d
 i
n

v
e

s
tm

e
n

t
(t

im
e
 t

o

d
e
v
e
lo

p
)

Calculated

Value

A way to animate Components (camera,

transform, ...) without needing an animator

controller. 1 2 90% 1.8 5 0.36

C# classes integrating common needs (such

as a "rotator" that could rotate between

different outputs every time a new one is

requested). 0.75 1 75% 0.6 2 0.28

A way to snap an object to the surface of any

other’s mesh without leaving any distance

between their meshes. 45 0.1 100% 4.5 20 0.23

Default existing presets for components like

the camera, canvas, ... 1.5 0.5 60% 0.5 2 0.23

Extensions for components and classes like

the Transform or the Vector. 1 2 60% 1.2 6 0.20

Project Development 47

Audio manager component able to easily

handle multiple audio clips. 0.25 7 90% 1.6 10 0.16

Being able to copy and paste the values of a

Transform Component world cords even if the

object has a parent object. 22.5 0.1 100% 2.3 15 0.15

Being able to display the console in the game

window/screen (an in-game console). 0.5 3 75% 1.1 8 0.14

An easy way to set the default import settings

for different types of assets. 1 5 80% 4.0 30 0.13

Being able to set objects as not editable in the

hierarchy of the scene. 10 0.5 100% 5.0 40 0.13

Easy way to save C# objects in a JSON format

(in a similar manner that PlayerPrefs work). 0.25 10 75% 1.9 15 0.13

A default template state machine. 0.25 10 70% 1.8 15 0.12

Default shaders and particles that could be

used directly or as template. 1.25 2 35% 0.9 8 0.11

Ability to create folders in the Hierarchy. 15 0.1 100% 1.5 15 0.10

An orientative folder structure automatically

created for the project. 0.25 1 50% 0.1 2 0.06

In the scene view, being able to select objects

behind other objects. 100 0.01 100% 1.0 20 0.05

Straightforward way to download data with

HTML requests. 0.25 4 30% 0.3 6 0.05

Templates for character controllers of different

types (like first person, third person, ...). 0.25 20 30% 1.5 35 0.04

Default custom renderers. 0.75 2 25% 0.4 10 0.04

Easy way to animate ragdolls and inverse

kinematics. 0.75 20 10% 1.5 40 0.04

Ability to encrypt PlayerPrefs. 0.25 4 30% 0.3 10 0.03

48 Reduction of the Workload in Unity

An integrated .gitignore in the Unity projects or

a way to create it natively. 0.25 0.25 90% 0.1 2 0.03

Lorem ipsum text generator for the UI

components with text fields. 1.5 0.1 70% 0.1 8 0.01

An alignment system to snap objects into grids

(support for multiple types of grids such as

square, isometric, triangular, ... would be

appreciated). 1 0.25 40% 0.1 20 0.01

Asking for the shortcut to trigger the "quick

search" after installing the package. 0.25 0.1 100% 0.0 5 0.01

In the game window, alongside the current

predefined aspect ratios, display other aspect

ratios labelled as commonly used devices. 0.75 0.1 90% 0.1 15 0.00

After the creation of a new project, display a

pop-up asking if it is wanted to enable the

automatic generation of lighting data. 0.25 0.1 80% 0.0 5 0.00

Table 1. Most requested features with its expected monthly usage, workload reduction
in hours, rate of applicable projects, calculated payoff, implementation difficulty

(development time) and calculated value. As greener a cell is, the more exceptionally
good the feature is, and, the reddish a cell is, the worse the feature is compared to the

others.

Knowing the value of each of the selected features, the implementation can be prioritized,

and the development can start.

Project Development 49

6.2 Maintenance and implementation

The version control through the development process is going to be done using the

software “GitHub16”. The project’s repository can be found through the following link:

https://github.com/guplem/UnityEssentials

6.2.1 Fixing the weak points

Automatic application of asset’s recommended settings

Description:

The modifications for the project that Essentials provides have to be manually requested

and looked for. This means that most of them are unknown for the users who do not read

the documentation.

Objective:

A window must pop up right away after installing the asset asking what configuration the

user wants to set up for the project. In that window, it is expected to have the following

options:

- Installing the QuickSettings package.

- Disabling the Warning C60649.

New options might be added in future updates.

Implemented approach:

An interface and an abstract class have been created to normalize the modifications that

Essentials easily allows the user to apply. To comply with those normalizations, the

existing modification have been updated.

16 GitHub is a collaborative development platform to host projects using the Git version control system.

https://github.com/guplem/UnityEssentials

50 Reduction of the Workload in Unity

After that, a new editor window named ‘“Essentials' Settings and Modifications” has been

created. In it, all the modifications that inherit from the class Modification are going to be

displayed alongside short explanations for the available actions.

Figure 6. Essentials' Settings and Modifications window with the mouse hovering on the
“Apply” button for the “Install Quick Search” modification with its tooltip being displayed.

The “Essentials' Settings and Modifications” window includes a button to search for

configuration modifiers not listed on the list in case the automatic population does not

work as expected.

Additionally, the window is going to automatically open in the middle of the screen after

installing the package in a new project. After doing so, using the EditorPrefs class

provided by Unity, that fact is going to be saved in registry, so it does not pop up

constantly.

Test and demo:

The testing has been done manually. The window is automatically opened only just after

installing the package, the available modifications are listed, and all the buttons perform

the actions as expected.

It has been thought that no demo is required to demonstrate this feature because it will

be self-demonstrating itself with the automatic pop up.

Project Development 51

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/Automatic-application-of-

asset%E2%80%99s-recommended-settings

Time of development: approximately 4 hours.

https://github.com/guplem/UnityEssentials/releases/tag/Automatic-application-of-asset%E2%80%99s-recommended-settings
https://github.com/guplem/UnityEssentials/releases/tag/Automatic-application-of-asset%E2%80%99s-recommended-settings

52 Reduction of the Workload in Unity

The DebugPro class shouldn't be needed

Description:

To debug an enumerable, you have to use the Essential’s class named DebugPro instead

of the default class named Debug, which would be expected by the Unity users.

Objective:

Integrate the functionalities from the class DebugPro into the class Debug and delete the

need of using the class DebugPro or any other class to use the functionality currently

existing in the DebugPro class.

Implemented approach:

After gathering some documentation, it has been concluded that, in C#, you cannot use

extension methods statically because they are a technique for simulating instance

methods.

Other approaches such as creating an additional Debug class in another namespace

have been considered. However, they would end up having the same issue as DebugPro,

the user would have to proactively seek for the feature instead of having it available using

the default class.

It means that because this class is almost only used statically, the additional features

provided by DebugPro will have to still be used through this class.

However, an extension method for the features has been created just in case any user

tries to use the Debug class in a non-static way. And the class DebugPro has been

renamed to DebugEssentials to easily understand from where it comes and its purpose.

Test and demo:

The existing demo scene and script of the feature has been kept in the project and used

as testing. No updates were needed because no new specific testing was necessary

(apart from the testing on the extension method that has been done in a dummy script).

Project Development 53

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/The-DebugPro-class-shouldn't-

be-needed

Additionally, a video hosted on YouTube exist as a demonstration of the feature:

https://www.youtube.com/watch?v=Jmkgf7MXzFg&list=PLO1iU9RfINVrq0aFA8kiyHePe

Z9z5oMpX&index=9

Time of development: approximately 3 hours.

https://github.com/guplem/UnityEssentials/releases/tag/The-DebugPro-class-shouldn't-be-needed
https://github.com/guplem/UnityEssentials/releases/tag/The-DebugPro-class-shouldn't-be-needed

54 Reduction of the Workload in Unity

Improving the Pool class

Description:

The Pool class should have some behaviours modified, functionality added, and

interaction methods improved in order to mimic as much as possible the usual way to

interact with a native Unity class or component.

Objective:

Implement the following modifications:

- The user must be able to set the parent of the spawned object using the Spawn

method.

- The Pool class should be able to instantiate a defined number of objects per frame

at its creation or when decided to increase the performance.

- The Pool class should be able to pool multiple objects at the same time, deciding

if it cycles through them in order or randomly.

- The Pool class should be serializable/editable through the inspector.

Implemented approach:

The class was already very compliant with the good software design practices explained

before in the theoretical framework, so not many things had to be improved.

To be able to set the parent while spawning an object, an optional parameter has been

added to the Spawn method to communicate the desired Transform parent.

The automatic instantiation objective has been slightly modified. Previously, the objective

was to be able to spawn a defined number of enemies per frame. But it has been thought

that a more modular approach would be to let the users choose how many objects to load

at any given time. So, if they want, they can simply program the way they want their pool

to load them. It could be every some seconds, frames or any other trigger.

Project Development 55

To implement the possibility to pool multiple objects in the same pool, instead of hosting

only one base object, a list of game objects has been added to be used instead. That list

will be used by the instantiation process, which will choose one of them at a time.

Additionally, a random option for the instantiation process of pool has been implemented

and added in the constructors. When set to true, the pool is going to pick the objects

randomly (not in order) during the instantiation of them. However, after having all the

objects instantiated, the respawn of the objects is going to be done in order. It is that way

to remove the possibility of respawning one of the latest objects spawned, something

usually undesirable.

The serialization process of the class, so it would be editable through the inspector

window, only needed to add the attribute Serializable to the Pool class, and some testing.

Test and demo:

To test the different features, 3 scenes have been created. Each of one of them hosts

different ways of using the tool. The scenes have been configured, so they are easier to

comprehend and can be used as demos.

- PoolSmall: The simplest way of managing a pool configured through the inspector.

- PoolMultiObjects: It tests and shows that the pool can host more than one object.

- PoolBig: Tests and demonstrates the loading feature of the tool by loading an

object every second. It also shows how the pool can be created through code with

just one GameObject as a base instead of a list of them.

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/Improving-the-Pool-class

Additionally, a video hosted on YouTube exist as a demonstration of the feature:

https://www.youtube.com/watch?v=hyGCcDm2u9Y&list=PLO1iU9RfINVrq0aFA8kiyHeP

eZ9z5oMpX&index=5

Time of development: approximately 4 hours.

https://github.com/guplem/UnityEssentials/releases/tag/Improving-the-Pool-class

56 Reduction of the Workload in Unity

Improving SimpleAnimation

Description:

Some aspects of the elements related with the SimpleAnimations are not compliant with

the usual way of interacting with Unity.

Objective:

Implement the following modifications:

- The component SimpleAnimationManager should be renamed to

ComponentAnimationManager in addition to the class SimpleAnimation which

should be renamed to ComponentAnimation. It better fits its intent, and it is more

self-explanatory.

- The component SimpleAnimationManager should have a clearer inspector

interface to increase the usability and ease of use.

Implemented approach:

It has been chosen not to rename the classes to avoid decreasing the modularity. If they

were named so it is understood that they are made to animate components, it would look

like their only purpose is to do so, which is not. They can handle the animation process

of any class.

The inspector, however, has been improved in multiple aspects. Visual clarity has

increased by creating boxes around each animation, not all of them. Additionally, not

useful information has been removed. Those elements are:

- The name of the namespace while choosing the animation type (implementation).

- The script name for the manager.

- The editor for the number (size) of the animations.

The implementation’s search area has been moved to the bottom and its ascetics have

been adjusted to be less attractive due to its lack of constant need of using it. However,

Project Development 57

it has been kept because it can be handy when creation custom implementations of

SimpleAnimation.

Additionally, the text of some labels has been updated to clarify the use of the tool's

inspector and a field to name the animation has been added alongside additional

functionality related to it. That functionality is the ability to see the animation’s name while

collapsed in the inspector and being able to play, pause and resume an animation

searching it by name in the AnimationManager.

To finish, a label displaying the type of animation and an animation preview have been

added for each animation. In case that the animation affects a Unity Object, it will be

marked as dirty, so the state of the object during the preview can be saved.

Figure 7. At the left, the old inspector for the Animations Manager. At the right, the new
inspector for the Animations Manager.

58 Reduction of the Workload in Unity

Test and demo:

The already existing demos have been used as a test environment and kept as demos,

so no noticeable modifications have been made.

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/Improving-SimpleAnimation

Time of development: approximately 5 hours.

https://github.com/guplem/UnityEssentials/releases/tag/Improving-SimpleAnimation

Project Development 59

Increasing the usability of the EasyRandom class

Description:

The class EasyRandom should have a name that starts with Random, so the usability

increases through making it easier to find and, therefore, use.

Objective:

The class EasyRandom should be renamed, so it starts with the word “random”.

Implemented approach:

The implementation is very straightforward. The only thing needed was to rename the

class EasyRandom.

It has been chosen to name it RandomEssentials so it maintains consistency with the

DebugEssentials class.

Additionally, it has been decided that all future classes that extend the functionality of an

existing class and its existence cannot be hidden, they will be named as “ClassEssentials”

(where “Class” will be the name of the improved one). This way, they are going to be

known by the user easily thanks to the IDE’s Automatic Completion features. And, its

origin and purpose are more obvious as well.

Test and demo:

The testing has been done in the existing demo scene. No changes were needed.

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/Increasing-the-usability-of-the-

EasyRandom-class

Time of development: approximately 1 hour.

https://github.com/guplem/UnityEssentials/releases/tag/Increasing-the-usability-of-the-EasyRandom-class
https://github.com/guplem/UnityEssentials/releases/tag/Increasing-the-usability-of-the-EasyRandom-class

60 Reduction of the Workload in Unity

Increasing the usability of the shortcut “Clear Console”

Description:

The “Clear Console” shortcut should not be in the Essentials file menu entry, but in a

place where Unity users should expect it to be.

Objective:

The shortcut to clean the console should be displayed in at least one of these places:

- While hovering on top of the “clean” button of the console window.

- In the dropdown options of the console window itself.

- In the native shortcuts tool of Unity

Additionally, it should be removed from the Essentials file menu.

Implemented approach:

The MenuItem attribute has been replaced by the Shortcut attribute, which allows the

user to add shortcuts to the main Shortcut Manager of Unity.

Subsequently, the MenuItem for the shortcut disappeared, and the shortcut can be seen

and customized using the Shortcut Manager.

Project Development 61

Figure 8. A screenshot of the Shortcut Manager where the “Clear Console” shortcut
information can be seen.

Test and demo:

For simplicity, it has been decided that small features like shortcuts should not have

demos by themselves. They, like this one, will be manually tested and they will appear in

the documentation.

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/Increasing-the-usability-of-the-

shortcut-%E2%80%9CClear-Console%E2%80%9D

Time of development: approximately 1 hour.

https://github.com/guplem/UnityEssentials/releases/tag/Increasing-the-usability-of-the-shortcut-%E2%80%9CClear-Console%E2%80%9D
https://github.com/guplem/UnityEssentials/releases/tag/Increasing-the-usability-of-the-shortcut-%E2%80%9CClear-Console%E2%80%9D

62 Reduction of the Workload in Unity

Improving organization of the Essentials file menu entries

Description:

The Essentials file menu entry should not be found in the root.

Objective:

To have all Essentials file menu entries inside any of the default ones or, if they are not

appropriate, under an entry named “Tools”.

Implemented approach:

No changes were needed because during the improvements previously made, the

desired objective was accidentally recreated before the development of this.

Project Development 63

6.2.2 Implementing new features

A way to animate Components (camera, transform, ...) without needing an

animator controller

Description:

An easy way to animate more elements commonly used in unity such as components is

wanted. This would be used to modify the status of the most common elements of the

game to a destination state over a defined period of time.

This feature has a high percentage of projects where it could be used while being

relatively fast to implement. Given these facts, it got a value of 0.36, the highest of all the

rated features.

Objective:

Extending the functionality of the already existing feature under the name of

SimpleAnimation to add support to animate additional elements such as:

- Camera component

- Vector2

- Vector3

- Colours

- Float

- Integer

Implemented approach:

The already-in-place design of the Simple Animations system allows the creation of

different types of animations to handle almost any element that is wanted to be animated

in the game.

To add support to animate new Unity elements, the only thing needed is to create a new

class that inherits from SimpleAnimation. The behaviour of the animation has to be

64 Reduction of the Workload in Unity

programmed in it following the same structure as the already-existing simple animations

classes.

Doing so, new classes have been created to add support for all the elements listed as

objective with the exception of Image, because the only element that could be animated

was the colour, which was covered by the ColorAnimation class.

Test and demo:

Two scenes have been created to test and demo the newly added features.

- CameraAnimationExample: Displays an example of how the camera can be

animated to switch the background colour, field of view, the clipping planes, ratio

and location, etc.

Figure 9. Visualization of the camera animation in four steps (1 to 4). The field of view,
background colour, proportions (rect) and clipping planes are animated. Note: Some
GameObjects seem to disappear or lose mesh faces, but it is due to the animation of

the clipping planes.

- MiscellanyAnimations: Shows how the animation of floats, integers, vectors and

colours can be used in the UI or anywhere else.

Project Development 65

Figure 10. From left to right: the animation progressing in the MiscellanyAnimations
scene, where the colour of an image, an integer, a float, a Vector2 and a Vector3 are

animated.

Additionally, a video hosted on YouTube exist as a demonstration of the feature:

https://www.youtube.com/watch?v=nE_ER_qw3y8&list=PLO1iU9RfINVrq0aFA8kiyHeP

eZ9z5oMpX&index=8

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/A-way-to-animate-Components-

(camera%2C-transform%2C--)-without-needing-an-animator-controller

Time of development: approximately 5 hours.

https://www.youtube.com/watch?v=nE_ER_qw3y8&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=8
https://www.youtube.com/watch?v=nE_ER_qw3y8&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=8
https://github.com/guplem/UnityEssentials/releases/tag/A-way-to-animate-Components-(camera%2C-transform%2C--)-without-needing-an-animator-controller
https://github.com/guplem/UnityEssentials/releases/tag/A-way-to-animate-Components-(camera%2C-transform%2C--)-without-needing-an-animator-controller

66 Reduction of the Workload in Unity

C# classes integrating common needs (such as a "rotator" that could rotate

between different outputs every time a new one is requested)

Description:

Flow control classes are wanted to mimic the ease of use that they provide in some game

engines such as Unreal Engine17.

As the previous features, this one can be used in a high percentage of projects. At the

same time, integrating it should take a relatively short time. This gives a value of 0.28 to

the feature (77.7% compared to the most valued feature), being the second one from the

top.

Objective:

To easily work with the following flow-control nodes/classes:

- DoN (and DoOnce): Allows the call of a function N (or one) time even though they

are called more times.

- Sequence (and FlipFlop): Executes one of the linked functions every time it is

called rotating between them in sequence or randomly.

Implemented approach:

Four classes (DoN, DoOnce, Sequence and FlipFlop) have been created to allow the

users to control the execution flow as desired.

All the classes can be used and configured through the inspector or with code.

Test and demo:

To test and demonstrate the behaviour and usability of the different classes, two scenes

have been created. One scene shows how to configure the classes using the Unity’s

17 Some examples of nodes to control the flow control can be found in the Unreal Engine documentation:

https://docs.unrealengine.com/en-
US/ProgrammingAndScripting/Blueprints/UserGuide/FlowControl/index.html

https://docs.unrealengine.com/en-US/ProgrammingAndScripting/Blueprints/UserGuide/FlowControl/index.html
https://docs.unrealengine.com/en-US/ProgrammingAndScripting/Blueprints/UserGuide/FlowControl/index.html

Project Development 67

inspector and the other one how to do so through code. In each scene, a game object

exist for the demo of each class.

Figure 11. At the left, the configuration view of a Sequence in the inspector. At the right,
the console displaying debug messages proving the functionality of the Sequence.

Additionally, a video hosted on YouTube exist as a demonstration of the feature:

https://www.youtube.com/watch?v=iSTBtw3BA0Y&list=PLO1iU9RfINVrq0aFA8kiyHePe

Z9z5oMpX&index=10

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/C%23-classes-integrating-

common-needs-(such-as-a-rotator-that-could-rotate-between-different-outputs-every-

time-a-new-one-is-requested)

Time of development: approximately 3 hours.

https://www.youtube.com/watch?v=iSTBtw3BA0Y&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=10
https://www.youtube.com/watch?v=iSTBtw3BA0Y&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=10
https://github.com/guplem/UnityEssentials/releases/tag/C%23-classes-integrating-common-needs-(such-as-a-rotator-that-could-rotate-between-different-outputs-every-time-a-new-one-is-requested)
https://github.com/guplem/UnityEssentials/releases/tag/C%23-classes-integrating-common-needs-(such-as-a-rotator-that-could-rotate-between-different-outputs-every-time-a-new-one-is-requested)
https://github.com/guplem/UnityEssentials/releases/tag/C%23-classes-integrating-common-needs-(such-as-a-rotator-that-could-rotate-between-different-outputs-every-time-a-new-one-is-requested)

68 Reduction of the Workload in Unity

A way to snap an object to the surface of any other’s mesh without leaving any

distance between their meshes

Description:

Placing objects in a scene can be difficult, especially if you don’t want any visible gaps

between them. To make this process faster, a tool is desired.

This feature could be used in almost all projects in almost every session, giving it almost

the highest payoff of them all. However, the creation and modification of tools for the

placement of Game Objects in the scene is, personally, a completely unknown field. So,

integrating it might take longer than usual. Overall, the feature gets a total value of 0.23

(63.9% compared to the most valued feature).

Outcome:

During the gathering information about the available tools and ways to implement this

feature, it has been found that it already exists as an extension of the Move Tool tool for

transforms.

To use it, the user must have selected one GameObject in the scene with the Move Tool

activated at the same time that Shift and Control (Command on Mac) are held down.

While doing so, a square will appear in the middle of the tool. Dragging that square allows

the snapping of the selected object to the surface underneath (at the intersection of any

collider).

Project Development 69

Figure 12. Visualization of the tool in action snapping a capsule on top of a sphere.

More information about positioning GameObjects in a scene can be found in the Unity’s

Documentation webpage:

https://docs.unity3d.com/Manual/PositioningGameObjects.html

Additionally, a video hosted on YouTube exist as a demonstration of the feature:

https://youtu.be/V2c_djFiS2k

https://docs.unity3d.com/Manual/PositioningGameObjects.html
https://youtu.be/V2c_djFiS2k

70 Reduction of the Workload in Unity

Default existing presets for components like the camera, canvas, ...

Description:

It is desired to be able to quickly configure components, imported assets, … using presets

designed to fit as many possible projects as possible. This way, the user could have

consistency across projects in addition to ensure that the proper configuration to achieve

a defined goal can be easily set up.

This feature could be used in a quite broad number of projects needing almost no time to

implement it in the asset thanks to the ease of creating presets in Unity. This gave this

feature a total calculated value of 0.23 (63.9% compared to the most valued feature).

Objective:

During the research phase of this feature, some users gave the feedback that maybe

creating default presets might not be that useful because creating your own only takes a

few clicks18.

In addition to this, while thinking about which presets to include, it has been found that,

to create the most useful ones in most cases, the number of modifications to make were

as few as just one. So, not much workload would be relieved by this feature integration

(in contradiction of what was previously thought).

So, it has been decided that, instead of creating presets, the feature will focus on adding

a tool to Unity to report if objects or assets match any selected preset.

The feature will have multiple objectives that will be tried to match in order:

1. A tool to know if all Game Objects of the open scene match a preset (if they contain

the component the preset is meant to set).

2. A tool to make all Assets match the presets contained in the same folder.

18 Some information about the workflow on creating and using presets can be found here:

https://blogs.unity3d.com/2019/10/11/improve-workflows-validate-decisions-and-avoid-errors-with-
presets/

https://blogs.unity3d.com/2019/10/11/improve-workflows-validate-decisions-and-avoid-errors-with-presets/
https://blogs.unity3d.com/2019/10/11/improve-workflows-validate-decisions-and-avoid-errors-with-presets/

Project Development 71

3. A tool to check if all Game Objects in the open scene match the default presets.

Implemented approach:

To create a tool to know which Game Objects in the open scene have a component not

matching the configuration of a preset, a Menu Item has been created. It can be found as

an item in the context menu of the presets under the title of “Validate all Game Objects in

scene”. It will check one by one all the components of the Game Objects in the scene

while listing the ones containing a non-matching configuration of the preset component.

72 Reduction of the Workload in Unity

Figure 13. In the inspector it can be seen how the tool is activated while in the console
the results are displayed.

The tool to ensure that all Assets in a folder are configured the same way as the presets

contained in it was actually found in a documentation page by Unity available here:

https://docs.unity3d.com/Manual/DefaultPresetsByFolder.html However, the tool is not

integrated in Unity by default even though it has been demanded several times19 and

19 Mentions of the feature can be found in this forum thread:

https://forum.unity.com/threads/presets-feature.491263/

https://docs.unity3d.com/Manual/DefaultPresetsByFolder.html
https://forum.unity.com/threads/presets-feature.491263/

Project Development 73

even acknowledged by Unity. So, the implementation consisted on creating a new

"Modification" for the Settings Window of essentials that allows the user to activate or

deactivate that behaviour by renaming a file so it is (or not) an actual script to the eyes of

the Unity engine.

Figure 14. At the top left, the Essentials Settings window showing the modification to
activate the tool. At the bottom, two inspectors demonstrate how the preset is applied to

the Assets in the same folder.

The last tool: a way to know the Game Objects in the scene match the default presets for

their components, was created by adding a Menu Item in the "GameObject" context. This

way, it can be accessed simply by right-clicking in the hierarchy of a scene under

"Presets/Search mismatches between scene GameObjects and default presets". It

74 Reduction of the Workload in Unity

behaves like the first tool of this section, but, instead of checking all components against

one preset, it is checking each component with its default presets.

Figure 15. In the hierarchy it can be seen how the tool is activated while in the console,
the results are displayed.

Test and demo:

The testing has been done in the development project for Essentials by using a custom

scene to check the actual behaviour of the tools against the expected one.

No demo has been created because the use of the tools is very straightforward, and one

could argue that the most difficult thing about using them is to find them. So, to try to

mitigate that, the documentation of the asset has been updated including information

regarding these tools.

Additionally, a video hosted on YouTube exist as a demonstration of the feature among

others:

https://www.youtube.com/watch?v=vW1MyuWqbO0&list=PLO1iU9RfINVrq0aFA8kiyHe

PeZ9z5oMpX&index=3&t=212

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/Improved-Preset-Tools

Time of development: approximately 6 hours.

https://www.youtube.com/watch?v=vW1MyuWqbO0&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=3&t=212
https://www.youtube.com/watch?v=vW1MyuWqbO0&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=3&t=212
https://github.com/guplem/UnityEssentials/releases/tag/Improved-Preset-Tools

Project Development 75

Extensions for components and classes like the Transform or the Vector

Description and objective:

An increase of the functionality of the main classes used while using Unity is wanted. The

new functionality should allow the users to easily perform commonly needed tasks while

working with the engine.

This feature has a right balance between the amount of work needed to implement it and

the amount of time it could be used, giving it a value of 0.20 (55.6% compared to the most

valued feature).

Implemented approach:

During the development of the original asset and the implementation of the newly added

features, sets of extensions have been created or imported to the asset.

Some extensions were actually needed to achieve some functionality for a specific

feature, so after properly documenting them, they were left as part of the asset to be used

by other users.

Other extensions were made freely available to use by people not related to this project.

After analysing, improving and documenting them, some externally-developed extensions

were added as well.

The resulting extended classes are:

- Camera

- Component

- Debug

- Float

- GameObject

- ICollection

- IEnumerable

- Int

- LayerMask

76 Reduction of the Workload in Unity

- Mathf

- Rect

- RectTransform

- SerializedProperty

- String

- Transform

- Vector

- VectorInt

Additional classes might be extended during the implementation of future features.

Test and demo:

The testing has been done in custom scripts and scenes checking the behaviour of the

code against the expected one.

No demo has been created for this feature because the code can be used the same way

as the native Unity’s API and the programming IDEs should help the users use the

extensions thanks to the XML comments of each method.

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/Extensions-for-components-

and-classes-like-the-Transform-or-the-Vector

https://github.com/guplem/UnityEssentials/releases/tag/Extensions-for-components-and-classes-like-the-Transform-or-the-Vector
https://github.com/guplem/UnityEssentials/releases/tag/Extensions-for-components-and-classes-like-the-Transform-or-the-Vector

Project Development 77

Audio manager component able to easily handle multiple audio clips

Description:

A way to play and manage multiple audio sources using a single component is wanted.

This is to address the that standalone Audio Sources components in unity only can play

one clip at a time and managing them can be complex when you have multiple sounds.

This feature can be used in almost all the projects without being very difficult to implement,

giving it a value of 0.16 (44.4% compared to the most valued feature).

Objective:

Create a component that allows the user to play as many audio clips as they want without

worrying about the audio sources that they have set up.

Basic functionality such as stopping the playing clips or managing the configuration of the

audio sources playing the clips is wanted as well.

Implemented approach:

A component named AudioSourceManager has been created with the ability to play a clip

with a desired configuration, stop playing any or all clips, modifying the configuration of a

playing clip, …

Additionally, multiple presets have been created, so the importing of audio clips into the

project is easier. The information regarding the configuration of those presets have been

gathered from the following post:

https://www.gamasutra.com/blogs/ZanderHulme/20190107/333794/Unity_Audio_Import

_Optimisation__getting_more_BAM_for_your_RAM.php

Test and demo:

A demo and example scene has been created under the name of

AudioSourceManagerExample. It uses the script with the same name to demonstrate and

test the core functionality of the new component by being able to play two different audio

clips, stop all or one of them and modifying the volume of one of them.

https://www.gamasutra.com/blogs/ZanderHulme/20190107/333794/Unity_Audio_Import_Optimisation__getting_more_BAM_for_your_RAM.php
https://www.gamasutra.com/blogs/ZanderHulme/20190107/333794/Unity_Audio_Import_Optimisation__getting_more_BAM_for_your_RAM.php

78 Reduction of the Workload in Unity

Figure 16. Buttons in the AudioSourceManagerExample scene that demonstrate and
test the core functionality of the AudioSourceManager component.

Additionally, a video hosted on YouTube exist as a demonstration of the feature:

https://www.youtube.com/watch?v=p03-

PuIRs5k&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=7

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/Audio-manager-component-

able-to-easily-handle-multiple-audio-clips

Time of development: approximately 5 hours.

https://www.youtube.com/watch?v=p03-PuIRs5k&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=7
https://www.youtube.com/watch?v=p03-PuIRs5k&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=7
https://github.com/guplem/UnityEssentials/releases/tag/Audio-manager-component-able-to-easily-handle-multiple-audio-clips
https://github.com/guplem/UnityEssentials/releases/tag/Audio-manager-component-able-to-easily-handle-multiple-audio-clips

Project Development 79

Being able to copy and paste the values of a Transform Component world cords

even if the object has a parent object

Description:

Being able to choose if it is wanted to copy and paste the transform values relative to the

parent or relative to the world can make the work easier to the world editors among many

Unity users.

This feature could be heavily used in all projects. However, investigation about the

Transform component, Unity’s clipboard API and the modification of editor contextual

menus must be done. This can lead to a considerable time of development. Overall, the

resulting value of the feature is 0.15 (41.7% compared to the most valued feature).

Outcome:

No development to implement the feature was needed because during the gathering

information, it has been noticed that in one of the latest updates of unity, this functionality

has been natively integrated. It is unclear which update added this feature but been found

in the version 2020.3.2f1 while being missing in the previous version 2019.4.21f1.

80 Reduction of the Workload in Unity

Figure 17. At the left, the context menu for the component Transform in the version of
Unity 2019.4.21f1. At the right, the same menu in the version 2020.3.2f1. New

functionality such as the one described by this feature can be found in the latest context
menu.

Project Development 81

Being able to display the console in the game window/screen (an in-game console)

Description:

While running builds, Unity only allows the users to display error messages. No standard

or warning errors can be displayed natively. A way to be able to read the console in-game,

so it can be seen while running builds is desired.

The value of the feature exist on the high variety of projects that would be able to take

advantage of this tool (considered 75% of them if not more). Giving it a calculated value

of 0.14 (38.9% compared to the most valued feature).

Objective:

The objective is to have a very easy-to-use and set up console that would be handy to

the developers and testers running builds. This console must be easily toggled on and

off, and support most of the UI systems. Saving the logs in a file might be handy as well.

Implemented approach:

A class named Console has been created to hold all the core functionality.

From it, 3 classes inherit (ConsoleGUI, ConsoleTextUI and ConsoleTMP) which can be

set up as Components that will display the console in-game using different techniques.

- ConsoleGUI: Displays the console using the legacy Unity GUI system.

- ConsoleTextUI: Updates a Text UI component in the same game object to display

the logs.

- ConsoleTMP: Updates a TMP_Text (Text Mesh Pro Text) component in the same

game object to display the logs.

The visualization of the console can be toggled with the press of a configurable key and

the aesthetics are fully customizable using the ConsoleTextUI and ConsoleTMP.

82 Reduction of the Workload in Unity

Additionally, the Console class allows the automatic saving of the logs in a file in a

dynamic folder inside the desktop20.

Test and demo:

A test and demo scene has been created under the name of ConsoleExample. In it, the

three types of console can be visualized alongside two buttons that allow the clear/reset

of the consoles and the creation of log test messages to see the consoles in action.

Figure 18. Visualization of the ConsoleExample running with the native console of the
editor at the bottom left, the ConsoleGUI at the top left, the ConsoleTMP at the top right
and the ConsoleTextUI underneath. At the bottom right, the file created containing the

logs for the running session.

20 This route can be modified by hard-coding the desired one in the Console class.

Project Development 83

The simple addition of the Component to any game object will create a working console

so, not much demonstration is needed besides for the basic functionality.

Additionally, a video hosted on YouTube exist as a demonstration of the feature:

https://www.youtube.com/watch?v=3-

TJKqG4GZM&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=6

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/Being-able-to-display-the-

console-in-the-game-window%2Fscreen-(an-in-game-console)

Additionally, in the future, a way to distinct the type of log message (warning, error or

standard) would be a nice addition. Right now, it is not possible to tell the type of each

one.

Time of development: approximately 5 hours.

https://www.youtube.com/watch?v=3-TJKqG4GZM&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=6
https://www.youtube.com/watch?v=3-TJKqG4GZM&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=6
https://github.com/guplem/UnityEssentials/releases/tag/Being-able-to-display-the-console-in-the-game-window%2Fscreen-(an-in-game-console)
https://github.com/guplem/UnityEssentials/releases/tag/Being-able-to-display-the-console-in-the-game-window%2Fscreen-(an-in-game-console)

84 Reduction of the Workload in Unity

An easy way to set the default import settings for different types of assets

Description:

Specially in big projects, a lot of assets will be constantly imported. Having to manually

reconfigure all of them can take a lot of time. So, if the assets are normalized following a

defined structure, a filter could be created to modify the asset’s configuration when they

are imported.

This feature has the advantage of being useful in most of the projects and, specially, on

those that require more hours of work. So, even though the implementation of it might

require a lot of time (due to the lack of knowledge on the asset’s import pipeline and the

managing of serialized data for the assets), its calculated value is 0.13 (36.1% compared

to the most valued feature), being the 9th most valuable feature of the project.

Outcome:

During the development of the feature “default existing presets for components like the

camera, canvas, …”, the presets were studied, and it was understood that some of the

functionality that they host is related to the definition of the import settings for assets.

The presets can be set as default importers, so any imported asset matching the defined

filter will be automatically configured accordingly to the preset.

Project Development 85

Figure 19. At the top, the button in the preset’s inspector that easily allows the user to
set it as the default configuration for the imported assets of the same type. At the
bottom, the Preset Window Manager that allows the management of the presets,

including the configuration of the filtering used to apply them.

86 Reduction of the Workload in Unity

Being able to set objects as not editable in the hierarchy of the scene

Description:

Because you don’t always want to be able to modify all objects in the scene, a way to

“lock” them, so they cannot be modified by error, is desired.

This could be used quite many times in all type of projects, avoiding having to spend time

troubleshooting issues caused by undesired modifications of scene elements.

Due to these benefits, even though this feature has an expected long time of development

(due to the lack of knowledge in this field), this feature got a score of 0.13 (36.1%

compared to the most valued feature).

Outcome:

While the research to develop this feature was ongoing, it was noticed that, since Unity

4.3, an option to lock layers in a manner that overlaps with the functionality of this feature

was added. Every GameObject can be assigned to a layer and those layers can be

“locked”, so the selection of the game object with that layer is not possible.

Figure 20. Layers’ drop-down where they can be locked. It is placed at the top right of
the editor’s window.

It has been decided not to implement the custom feature because Unity’s way of doing it

makes sense and there is no need for a feature that would overlap with the already

existing one.

Project Development 87

Additionally, when you want to avoid the edit of some objects it is because you are not

working with that type of objects.

So, locking the group can be more useful than having to lock them one by one.

88 Reduction of the Workload in Unity

Easy way to save C# objects in a JSON format (in a similar manner that

PlayerPrefs work)

Description:

PlayerPrefs are the simplest and most common way to store simple data using Unity.

They work cross-platform and are simple to use. However, they cannot save more than

some of the simple types of data, and they cannot encrypt the data either.

A tool that overcomes those limitations would be handy for a huge number of projects,

since saving and retrieving data is very common in any type of software. However, it is

expected to have a significant time of development, especially because making it cross-

platform capable can be challenging. Overall, the calculated score is 0.13 (36.1%

compared to the most valued feature).

Objective:

To allow the user to save, load and delete data in and from JSON-formatted files that

could be easily encrypted and decrypted.

Implemented approach:

Because developing for multiple platforms can be difficult due to the lack of testing

devices, a base of previously tested code has been used to develop this feature21.

Reducing the complexity of the original project from tens of classes to only 3, some

features of the original project have been removed, favouring usability, ease of use and

simplicity.

The main class is SaveDataManager, which contains the public and static methods Save,

Load, Delete, DeleteAll and Exists. With these methods, alongside the two helper classes

SD_Encoder and SD_JsonSerializer, it can easily manage the locally stored data.

21 This code can be found in this GitHub repository: https://github.com/BayatGames/SaveGameFree. Its

licence is MIT, which allows distribution, modification, sublicencing, … of the code.

https://github.com/BayatGames/SaveGameFree

Project Development 89

Test and demo:

To test and demonstrate the basic functionality of the class, a scene named

SaveDataExample has been created. It contains only the object Example that holds the

SaveDataExample component.

In that component, the values of the different fields can be modified in addition to save

them on the disk, load them all, open the folder that contains the data, delete only one of

them or delete them all.

Checking out the SaveDataExample class will help understand the code because its use

is completely straightforward, especially if PlayerPrefs has been used in the past by the

user.

Figure 21. At the right, the component where the test and demonstration of the feature
can be done by modifying the values and using the available buttons. At the Top left,
the hierarchy of the example scene for this feature and, under it, the files holding the

component’s data.

90 Reduction of the Workload in Unity

Additionally, a video hosted on YouTube exist as a demonstration of the feature:

https://www.youtube.com/watch?v=hDT3Zzb7okk&list=PLO1iU9RfINVrq0aFA8kiyHePe

Z9z5oMpX&index=4

Result:

The resulting asset after the implementation can be found in the following GitHub link:

https://github.com/guplem/UnityEssentials/releases/tag/Easy-way-to-save-c%23-

objects-in-a-JSON-format-(in-a-similar-manner-that-PlayerPrefs-work)

Time of development: approximately 8 hours.

https://www.youtube.com/watch?v=hDT3Zzb7okk&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=4
https://www.youtube.com/watch?v=hDT3Zzb7okk&list=PLO1iU9RfINVrq0aFA8kiyHePeZ9z5oMpX&index=4
https://github.com/guplem/UnityEssentials/releases/tag/Easy-way-to-save-c%23-objects-in-a-JSON-format-(in-a-similar-manner-that-PlayerPrefs-work)
https://github.com/guplem/UnityEssentials/releases/tag/Easy-way-to-save-c%23-objects-in-a-JSON-format-(in-a-similar-manner-that-PlayerPrefs-work)

Project Development 91

6.2.3 Integrating externally developed features

During the development of the project, multiple improvements of the Unity’s engine and

workflow made by the community were found and studied.

However, an update to the Terms of Service and Package Guidelines of December 4,

202022, prohibits the possibility of installing packages not hosted by Unity, using assets,

or packages such as Essentials.

A contact form was sent to the Unity’s Support Team asking for an explicit permit to be

able to include the feature of installing recommended packages not hosted by unity using

the asset Essentials. Having it, the value of the data would increase thanks to being able

to use the best tools available to reach this project’s goal.

However, no such permit was given, and it was clarified that it is no longer allowed to

install any asset or package using another asset or package. The only solution would be

to have those integrated in the Essentials asset itself or instructing the user how to

manually install them.

As a result, after a personal evaluation, with the permit of the authors and/or thanks to

the licence of the software, some externally developed tools were added to Essentials. It

has been done either way by integrating them directly or modifying the functionality to fit

the Essential’s goals, but always complaining with the licences.

By the end of the development of this project, the features included with the asset

Essentials initially developed by other users but adapted to fit the goals of this project’s

asset are:

- Extensions for different classes: some classes such as RectTransform have

big, public and free to use and distribute libraries of extensions published online.

As any other extension method, they can be called as a normal method with an

instance of a RectTransform.

22 Information regarding the update of the Terms of Service and Package Guidelines can be found here:

https://forum.unity.com/threads/updates-to-our-terms-of-service-and-new-package-guidelines.999940/

https://forum.unity.com/threads/updates-to-our-terms-of-service-and-new-package-guidelines.999940/

92 Reduction of the Workload in Unity

- Unity JSON FullSerializer: A robust and easy to use serializer that can serialize

almost anything. It works on every major Unity platform, including consoles. No

direct use of this tool is intended, but other tools can benefit from it.

- SaveGameFree: Functionality that, taking advantage of the Unity JSON

FullSerializer, makes it straightforward to save almost any kind of data in almost

any platform. To take advantage of this feature, the static methods from the class

SaveDataManager should be used.

- FixClassName: A tool that renames the class in the selected script to match the

name of the script's file. Using this feature is as simple as right-clicking on any

script asset and choosing the option “Update class name to match file name”.

- GOSeparators: A tool that allows the creation of consistent dividers in the editor's

hierarchy. To use this feature, you have to simply right-click on the hierarchy,

choose “Create Divider”, configure it in the appearing window and hit “ok”. It will

create an EditorOnly GameObject with the desired name to divide the different

types of GameObejcts.

Project Development 93

Figure 22. Option to start the creation process of a divider in the hierarchy.

Figure 23. Divider creator tool. The window where you can configure the characteristics
of the divider.

94 Reduction of the Workload in Unity

6.2.4 Documentation

A quick guide for the asset has been developed. It includes the description and basic

usage of the main features. It also points the user to the examples where they can easily

learn how to apply them.

The guide can be found as a PDF file in the downloaded asset, in the annex or in this

online document: https://docs.google.com/document/d/1-strmOzT7ka8uO8hEH_W3Xjlr-

ajjKcJ0b6h5KYnpJQ/edit?usp=sharing

In addition to the quick guide, all code has been documented using XML comments.

Figure 24. Example of XML comment from the asset’s code

The XML comments, apart from making the code easier to understand, allows the

creation of the full documentation of the code using the software Doxygen.

That documentation includes the description of classes and methods, the relationships

between them, and the calls from and to all methods within the asset.

That documentation can be found in the annexes at the same time than in a webpage

accessible using the following link: https://guplem.github.io/Essentials/html/

https://docs.google.com/document/d/1-strmOzT7ka8uO8hEH_W3Xjlr-ajjKcJ0b6h5KYnpJQ/edit?usp=sharing
https://docs.google.com/document/d/1-strmOzT7ka8uO8hEH_W3Xjlr-ajjKcJ0b6h5KYnpJQ/edit?usp=sharing
https://guplem.github.io/Essentials/html/

Project Development 95

Figure 25. Example of the generated documentation of a method from the asset using
“Doxygen”

96 Reduction of the Workload in Unity

6.3 Distribution

6.3.1 Publishing to the Asset Store

The asset is already available for download since before the start of the project through

the following link: https://assetstore.unity.com/packages/slug/161141

So, the process of publishing it is not going to be documented23 in this project. However,

the process of updating it24 will.

To start, the Unity Publisher Portal must be opened. It is found in this webpage:

https://publisher.unity.com/packages. In there, a list of the assets that can be managed

can be seen. Clicking on the name of the one that we want to update will open a managing

environment for the package.

In there, clicking in “Create a new draft to edit” will lead to a page where it is possible to

navigate to the Release Notes. On that point, the changelog and release version can be

filled ahead of the update.

23 Unity has published a video on YouTube explaining all the documentation process. The video can be

found here: https://youtu.be/Sp7vUE3Hmtw
24 The updating process has been done in the beta version of the “Unity Publisher Portal 2.0”.

https://assetstore.unity.com/packages/slug/161141
https://publisher.unity.com/packages
https://youtu.be/Sp7vUE3Hmtw

Project Development 97

Figure 26. View of the “Release Notes” section of the Unity Publisher Portal 2.0 with the
information regarding the update to the version 1.2.0

After writing down the information, it must be saved (not submitted). Then, switching to

unity is required alongside having the Asset Store Tools asset installed in the project.

Using the Asset Store Tools, the Package Upload window can be opened. After logging

in with the Unity’s publisher ID, the list of the available assets should populate.

Following the instructions in the Package Upload window, the next steps are:

1. Select the package to upload from the list (it should have “draft” written at the right

because it was created in the previous steps).

2. Select the folder that is containing all the assets relative to the package.

3. Choose if it is needed to include package dependencies, so the asset behaves as

expected (not needed for Essentials).

4. Validate the package to check that the new version does not have common

submission mistakes.

5. Upload the package.

98 Reduction of the Workload in Unity

Figure 27. At the left, the Package Upload window. At the top right, the Validator
window. At the bottom right, the Project folders structure window.

After uploading the package, checking the Package Upload section in the Unity Publisher

Portal is recommended to ensure that the upload went through. It can be easily done by

checking the time of the last upload.

After checking for warnings and errors, a submission of the update can be done by

clicking on “Submit”.

Then, the review process starts. It can take days but, after so, the asset is going to be

updated and available for everybody using the Unity Asset Store.

Project Development 99

Figure 28. The pop-up displayed after submitting the update for the asset using the
Unity Publisher Portal 2.0 informing about the review process schedule.

6.3.2 Asset Store page

The page of the asset in the asset store has been updated to follow the Asset Store’s

guidelines.

The information is now separated between the sections of summary, description and

technical details.

Additionally, the media in the store’s page has been improved to summarize the main

features of the asset with a cohesive, simple design and video tutorials of some features

can be found in the page too.

100 Reduction of the Workload in Unity

Figure 29. Some of the images present in the asset’s page summarizing main features

6.3.3 Changes on each version

Fixing update - 1.2.1 (13th of March 2021):

- Added a settings window for the asset with recommended settings.

- Renamed DebugPro to DebugEssentials and the EasyRandom to

RandomEssentials.

Project Development 101

- Increased and improved the functionality and ease of use of the Pool and the

SimpleAnimations.

- Replaced the menu Item for the shortcut “Clear Console” for a shortcut in the

shortcut manager.

- Updated the documentation and examples.

This release was not programmed in the project schedule, but it has been done in order

to validate the updating system and the workflow of the project ahead of time.

GitHub tag link: https://github.com/guplem/UnityEssentials/releases/tag/1.2.1

First Update - 1.3.1 (20th of April 2021):

- Added support for Simple Animations of floats, integers, cameras, colours and

vectors.

- Added C# classes: FlipFlop, DoOnce, DoN and Sequence to control the flow.

- Added extensions.

- Added tools to increase the functionality of the presets.

GitHub tag link: https://github.com/guplem/UnityEssentials/releases/tag/1.3.1

Second Update - 1.4.0 (18th of May 2021):

- Added the AudioSourceManager component to manage multiple audio sources

from the same component.

- Improved the DebugEssentials class, allowing creating warning and errors

messages while debugging IEnumerables.

- Added IEnumerables extensions.

- Improved the ease of use of the RandomEssentials class.

- Added recommended presets and Editor Layouts.

- Improved documentation and normalization.

- Added related links in the Essentials Settings page to obtain user feedback and

contact information.

https://github.com/guplem/UnityEssentials/releases/tag/1.2.1
https://github.com/guplem/UnityEssentials/releases/tag/1.3.1

102 Reduction of the Workload in Unity

Figure 30. Essentials Settings window at the release of the version 1.4.0.

GitHub tag link: https://github.com/guplem/UnityEssentials/releases/tag/1.4.3

Final Version - 2.0.0 (13th of June 2021):

- Added a tool to create dividers in the hierarchy.

- Added the ability to duplicate an asset by right-clicking on it.

- Added mesh renderer extensions.

- Added a tool to rename the class inside a script file to match the file's name.

- Added code snippets.

- Improved documentation and organization.

- Added a GitHub link to the project's repository.

https://github.com/guplem/UnityEssentials/releases/tag/1.4.3

Project Development 103

Figure 31. View of the asset’s organization at moment of the release of the version 2.0.0

GitHub tag link: https://github.com/guplem/UnityEssentials/releases/tag/2.1.1

https://github.com/guplem/UnityEssentials/releases/tag/2.1.1

Results 105

7 RESULTS

The resulting asset fixes the 7 issues found prior to the start of the development of this

final year project.

Additionally, the top 11 most valued features have been worked on, and dozens of tweaks

have been made to match the project’s objectives.

7.1 Where to find it

The latest update of the package can be found in the Unity Asset Store using the following

link: https://assetstore.unity.com/packages/slug/161141

Figure 32. Asset’s page in the Unity Asset Store after the release of the version 1.4.3

Additionally, the documentation of the latest version of the code can be found here:

http://guplem.github.io/Essentials/html and a “quick guide” of the asset can be found in a

dynamic Google Docs file here: https://docs.google.com/document/d/1-

strmOzT7ka8uO8hEH_W3Xjlr-ajjKcJ0b6h5KYnpJQ/edit?usp=sharing

All the documentation and the asset itself can be found in the annexes as well.

https://assetstore.unity.com/packages/slug/161141
http://guplem.github.io/Essentials/html
https://docs.google.com/document/d/1-strmOzT7ka8uO8hEH_W3Xjlr-ajjKcJ0b6h5KYnpJQ/edit?usp=sharing
https://docs.google.com/document/d/1-strmOzT7ka8uO8hEH_W3Xjlr-ajjKcJ0b6h5KYnpJQ/edit?usp=sharing

Conclusions 107

8 CONCLUSIONS

8.1 Regarding the objectives

8.1.1 Developing an asset to reduce the amount of work in most Unity

projects

The main objective of the final year project was to develop an asset that would work as a

set of tools and features that the average developer would most likely need in most of the

projects made with Unity to reduce the workload as much as possible.

Proving that the features reduce the amount of work of the users is difficult without getting

outside the scope of the project. However, it is worth noting that during the development

of the asset, some of the previously developed features (like RandomEssentials) were

used to develop new features25.

The most heavily used feature was the extensions, probably because they increased the

functionality of the most-needed and the well-known elements of the engine. Some

features that used them are the simple animations and the pool.

Additionally, during the development, it has been proven very handy to have the ability to

debug arrays and lists printing them in the console using the extensions of IEnumerable

and the class DebugEssentials.

Furthermore, personal projects that integrated the asset were being developed at the

same time as this project, and most of the features of the asset were constantly used.

Some examples are simple animations, save data, console in game, extensions, random

essentials, audio source manager, ...

However, some features, such as the flow control and the additional presets tools were

not used at all.

25 As little features as possible were used to develop new features to reduce the coupling.

108 Reduction of the Workload in Unity

Despite that, in general, the implemented features allow the user to reduce the amount

of code and work needed for common needs.

So, in conclusion, rating how much workload the asset reduces is not part of this project,

so no clear conclusions regarding this can be done. Although, it can be argued that tools

to decrease the amount of work needed can and have been developed.

Another thing that is worth evaluating is the development process used for each feature.

It worked as expected and following it allowed an easy documentation of each one of

them apart from avoiding losing track of the real objective of each feature.

However, a weak point of the process was the rigour of the testing. The lack of ownership

of devices running different operating systems did not allow proper testing to ensure that

all the features worked as expected in all platforms, so it cannot be proven that the

developed asset is going to be fully reliable.

8.1.2 Finding the best metrics to evaluate the value of each feature

To achieve the main objective, a protocol to find and prioritize useful features and tools

had to be designed. It had to rate each feature on how worth the effort to develop them

was, considering the amount of theoretical workload reduction that they would provide.

It is difficult to know for a fact if the most valuable features were those rated as such.

However, the fact that at least five of the features that were wanted to implement were

fully, or partially, natively made available in Unity can be seen as an indicative of a good

prioritization.

Additionally, some features were used to develop other features and in personal projects,

proving them worth it even though it is not known if at the same level that they were rated.

Despite that, not all the features were used, and it is almost certain that some of them

were not evaluated properly. However, the payoff metrics cannot be evaluated without

deviating from the project's goals, so it is not possible to know if they were properly rated.

The expected investment of time to develop, however, can be compared to the actual

one. On average, the features needed 25% less time than expected to implement.

Conclusions 109

However, the time needed to document, normalize and formalize them was not taken into

account, and if it had been accounted for, the time to implement each feature would have

increased by 2-3 hours, ending up taking around 10% more time than expected. These

results show that, at least, the expected investment used to rate each feature, was not off

by much.

Despite all of that, it has been noticed that the recollection of wanted features has not

been as good as expected. Some features were already existent in Unity and the number

of users reached to provide feedback was not as high as hoped. If the number of users

that communicated desired features in Unity had been increased, some could have been

repeated, and that would have been an additional way of understanding how desired each

feature was.

8.1.3 Usability

While working on the project, focusing on usability was another objective. It was key to

make the product usable for the targeted users to achieve the specified goals with

effectiveness, efficiency and satisfaction.

To do so, it tried to integrate it seamlessly in the engine following the internal guidelines

of Unity, imitating their tools, organization, … However, the engine is constantly being

updated, and it is difficult to find full consistency to imitate in the asset. The found

guidelines have been followed, but a lot of times it is easy to tell if that feature is native or

if it is an addition from the asset, even though they were integrated inside the UnityEngine

namespace.

To make the asset as easy to use as possible, integrated tutorials, tooltips, help elements,

videos, ... were used alongside the most self-explanatory naming found for every element.

However, no testing has been done to prove the usability of the asset because it would

be outside the scope of the project.

110 Reduction of the Workload in Unity

8.1.4 Good software design practices

Another objective was to facilitate, as much as possible, the development, maintenance

and upgradability of the asset using the best coding practices as frequently as possible.

To do so, the practices listed in the section “Good Software Design Practices” were used.

Additionally, full XML documentation of the code was added, making it possible to easily

understand the code and create a user-friendly documentation of it26.

Testing the use of the good software design practices was not considered part of the

project, but they were heavily considered and applied during the development of the

asset.

8.1.5 Demos

In addition to the development of the asset, some demos were wanted. Their objectives

were to prove that the asset could be used in different scenarios, to show how to

implement and use the tools, to prove that the workload was indeed reduced and to

increase the usability by having examples to learn from.

Its creation also allowed the testing of the features, so they have been proven useful for

the development of the asset and the users of it.

However, it is difficult to create fully-featured demos that demonstrate all elements of the

features in a clear way. So, it has been discovered that the written documentation of the

features has been usually the best and simplest way of fully documenting them and the

demos cannot substitute them even though they can play a crucial role.

Additionally, the design of the demos lacks examples applicable to actual projects. Most

of them only demonstrate the functionality of the features without showing in which

situations they could be used. Doing so would help the users understand the use cases

of each one of the asset’s features.

26 The online version of the code documentation can be found in the following page:

http://guplem.github.io/Essentials/html

http://guplem.github.io/Essentials/html

Conclusions 111

8.2 Usage by Unity users

Since the release of the first update related to this project (version 1.2.1) in March 2021,

a substantial increase in the rate of downloads and new users of the asset appeared.

During the previous months, the rate of downloads declined (after the initial spike after

the original release of the asset). The monthly downloads were an average of 5 from

September 2020 to February 2021. After the release of the version 1.2.1, the downloads

grew to 31 on March, followed by 45 downloads on April and 83 on May27.

Additionally, the amount of times each user downloaded the asset kept growing from an

all-time maximum of 1.5 times (after the initial release) to 2.6 in May. This can be

interpreted as a sign of satisfaction by the users that download this asset multiple times

for different projects.

The asset has been downloaded almost 400 times by more than 260 users28.

27 The analysis of the performance of the asset in the Asset Store has been done the 31st of May 2021, so

no tracking has been done after that date.
28 Since the start of the project, it has been downloaded around 159 times by 79 users (until the 31st of

May).

112 Reduction of the Workload in Unity

Figure 33. Downloads and users of the asset over time.

8.3 Personal reflexion

Personally, I now believe that this kind of projects that aim to create assets or tools that

are meant to be broadly used by almost any user of the engine, should take advantage

of as much feedback by the users as possible.

Even if the developer tries “to put themselves in the users' shoes” to try to determine what

features and design of the tools should be implemented, it is practically impossible to

have a global perspective to create the most versatile tools possible.

So, if I had to redo the project, I would have put more attention on receiving feedback

from users of Unity and of the developed asset.

With it, almost every part of the project could have been improved. From being able to tell

which features are the most desired, to knowing how the users would like to use them,

so they are as easy and seamless to use as possible.

Conclusions 113

With that being said, I do believe that the final product meets standards of high quality.

The number of users that started using the updated asset surprised me and at the end, it

is an asset that is going to be a must-have in almost all my projects.

I ended up learning how some not very-well known parts of the engine work and heavily

improved my ability to create versatile tools. So, all in all, this has been an interesting and

fulfilling project.

Bibliography 115

9 BIBLIOGRAPHY

Axon, S. (2016, September 27). Unity at 10: For better—or worse—game

development has never been easier. Unity at 10: For better—or worse—

game development has never been easier | Ars Technica. Retrieved

January 15, 2021, from https://arstechnica.com/gaming/2016/09/unity-at-

10-for-better-or-worse-game-development-has-never-been-easier/

Badiru, A. B., & Thomas, M. U. (2013, April 20). Quantification of the PICK Chart

for Process Improvement Decisions. Journal of Enterprise Transformation,

3(Quantification of the PICK Chart for Process Improvement Decisions), 1-

15.

George, M. L. (2003). Lean Six Sigma for Service: How to Use Lean Speed and

Six Sigma Quality to Improve Services and Transactions. McGraw-Hill.

International Electrotechnical Commission. (2015, February). 192-01-22. IEC

60050 - International Electrotechnical Vocabulary - Details for IEV number

192-01-22: "dependability". Retrieved February 6, 2021, from

http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=192-01-

22

International Organization for Standardization [ISO]. (2006). ISO 14764:2006

Software Engineering — Software Life Cycle Processes — Maintenance

(Second ed.).

International Organization for Standardization [ISO]. (2018). Part 11: Usability:

Definitions and concepts. In ISO 9241-11:2018 Ergonomics of human-

system interaction.

116 Reduction of the Workload in Unity

Longman Dictionary of Contemporary English Online. (n.d.). efficiency. efficiency

| meaning of efficiency in Longman Dictionary of Contemporary English |

LDOCE. Retrieved February 6, 2021, from

https://www.ldoceonline.com/dictionary/efficiency

Moran, J. W., & Riley, B. (2014, June 27). PICK Chart. Retrieved January 30, 2021,

from http://www.phf.org/resourcestools/Documents/PICK_Chart.pdf

Schardon, L. (2021, January 2). Best Game Engines of 2021. Best Game Engines

of 2021. Retrieved January 30, 2021, from

https://gamedevacademy.org/best-game-engines/

Simonyi, C. (2006, December 07). Hungarian Notation. Hungarian Notation |

Microsoft Docs. Retrieved January 06, 2021, from

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-

studio-6.0/aa260976(v=vs.60)?redirectedfrom=MSDN

Sommerville, I. (2004). Software Engineering (7th ed.). Pearson Education.

TXM Lean Solutions. (2020). Prioritising Improvement Ideas with a PICK Chart.

Improvement Ideas Scoring with a PICK Chart - TXM Lean Solutions.

Retrieved January 31, 2021, from https://txm.com/ranking-improvement-

ideas-pick-chart/

Unity Technologies. (2021). Unity Platform. Unity Platform | Unity. Retrieved

January 30, 2021, from https://unity.com/products/unity-platform

