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Abstract: Hypokinetic dysarthria, which is associated with Parkinson’s disease (PD), affects several
speech dimensions, including phonation. Although the scientific community has dealt with
a quantitative analysis of phonation in PD patients, a complex research revealing probable relations
between phonatory features and progress of PD is missing. Therefore, the aim of this study is to
explore these relations and model them mathematically to be able to estimate progress of PD during
a two-year follow-up. We enrolled 51 PD patients who were assessed by three commonly used clinical
scales. In addition, we quantified eight possible phonatory disorders in five vowels. To identify
the relationship between baseline phonatory features and changes in clinical scores, we performed
a partial correlation analysis. Finally, we trained XGBoost models to predict the changes in clinical
scores during a two-year follow-up. For two years, the patients’ voices became more aperiodic
with increased microperturbations of frequency and amplitude. Next, the XGBoost models were
able to predict changes in clinical scores with an error in range 11–26%. Although we identified
some significant correlations between changes in phonatory features and clinical scores, they are
less interpretable. This study suggests that it is possible to predict the progress of PD based on the
acoustic analysis of phonation. Moreover, it recommends utilizing the sustained vowel /i/ instead
of /a/.
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1. Introduction

Parkinson’s disease (PD) is a frequent neurodegenerative disorder that is associated with
a substantial reduction of dopaminergic neurons especially in substancia nigra pars compacta [1].
The primary motor symptoms of PD comprise tremor at rest, muscular rigidity, bradykinesia, and
postural instability [1]. Patients with PD also develop a variety of non-motor symptoms [2] such
as sleep disturbances, depression, cognitive impairment, etc. To diagnose, rate and monitor motor
and non-motor symptoms of PD, various clinical rating scales such as Unified Parkinson’s Disease
Rating Scale (UPDRS) [3], Freezing Of Gait Questionnaire (FOG-Q) [4], or Addenbrooke’s Cognitive
Examination-Revised (ACE – R) [5] have been developed. Nevertheless, reliability of the assessment is
often reduced by inter-rater variability [6].

Up to 90% [7] of patients with PD develop a multi-dimensional speech disorder named
hypokinetic dysarthria (HD) [8], which is manifested in phonation, articulation, and prosody [9–11].
In the area of phonation, insufficient breath support, reduction in phonation time, increased acoustic
noise, instability of articulatory organs, microperturbations of frequency/amplitude, and harsh breathy
voice quality has been observed [9,12]. HD leads to serious complications in daily communication of
patients with PD [13]. Generally, HD was found to be more severe in the advanced stages of PD [14].

As reported by the recent studies, acoustic analysis of HD can provide clinicians with
non-invasive and reliable methodology of PD diagnosis, assessment and monitoring [9,15]. Moreover,
this methodology has also been used to monitor the efficiency of PD treatment [10,16–18]. In the field
of acoustic analysis of PD phonation, the authors mostly focused on the sustained vowel /a/ [9].
Conventional phonatory features such as jitter, shimmer, harmonic-to-noise ratio, degree of unvoiced
segments, and formant-based parameters extracted from this vowel have been widely used to diagnose
PD [12,19–23]. Although Hazan et al. [24] employed analysis of sustained phonation for diagnosis
of PD even in its early stage, based on the recent review [9], most of the researchers find relevant
applications of the phonatory analysis especially in moderate or severe stages of this disorder.

For example, the analysis of sustained phonation has been utilized during PD severity assessment.
In 2010, Tsanas et al. [15] enrolled 42 PD patients and parameterized their sustained phonation of
vowel /a/ by a set of conventional features that were consequently mapped to UPDRS, part III (motor
examination) and the total score of this scale. Using classification and regression trees, they estimated
the UPDRS III score with MAE (mean absolute error) equal to 5.95. The total UPDRS score was
estimated with MAE = 7.52. A parametric version of this dataset has been made available for research
purposes and other research teams further decreased the estimation error [25–27]. Another work that
deals with the automatic clinical scores estimation was published by Mekyska et al. [21]. In this study,
they acquired sustained phonation of vowels /a/, /e/, /i/, /o/, /u/ in 84 PD patients. Modeling
conventional and advanced features by random forests provided the estimation of UPDRS III with
MAE = 5.70. In addition, the authors estimated several other clinical scores such as UPDRS, part IV
(complications of therapy) with MAE = 1.30 or Beck depression inventory (BDI) with MAE = 3.12.

Even though HD is one of the most problematic aspects of PD, the number of longitudinal
studies investigating the evolution of HD in PD over time (based on the acoustic analysis) is very
limited [28–31]. If we focus specifically on longitudinal monitoring of sustained phonation, then, in fact,
we can identify only one study, which is published by Skodda et al. [31]. In this work, the authors
repeatedly (with average time interval 32.50 months) acquired sustained vowel /a/ in 32 female and
48 male PD patients (age in session 1: 66.28 ± 8.11 years; PD duration in session 1: 6.10 ± 4.63 years;
UPDRS III in session 1: 20.16 ± 10.96; UPDRS III in session 2: 19.58 ± 8.29). The voice was quantified
by jitter, shimmer, noise-to-harmonic ratio, and mean fundamental frequency. Based on the paired
t-test, the authors identified significant changes in shimmer and noise-to-harmonic ratio. In both
cases, the values of these parameters increased. Another interesting finding is that, although some
phonatory features significantly changed, UPDRS III was held widely stable over time. The authors
provide two possible explanations: (1) voice impairment could be the result of an escalation of axial
dysfunction too subtle to be mirrored by UPDRS III; (2) alterations of speech parameters could be
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completely independent of motor performance that may be based upon non-dopaminergic mechanisms.
Inconsistencies in terms of the L-dopa effect on HD are further discussed in Brabenec et al. [9].

To sum it up, although the scientific community frequently addresses phonation in association
with HD (especially when diagnosing or assessing PD), to the best of our knowledge, there is only one
study that focuses on HD phonatory disorders from a longitudinal perspective. Moreover, the work
deals with the analysis of phonation just partially, it considers only the sustained vowel /a/, and it
does not explore a possibility of PD progress prediction based on a combination of acoustic analysis
and machine learning. Therefore, in the frame of our two-year follow-up study, we are going much
further with the following aims:

1. to identify phonatory acoustic features at baseline that are significantly correlated with changes
in various clinical rating scales,

2. to investigate relationship between changes in the phonatory acoustic features and the clinical
rating scales after the two-year follow-up,

3. to establish mathematical models that will estimate the change in clinical rating scales based on
the change in acoustic measures,

4. to compare results based on five vowels: /a/, /e/, /i/, /o/, /u/.

The rest of this article is organized as follows: Section 2 describes a dataset of PD patients as well
as methodology in terms of acoustic analysis, statistical analysis and machine learning. Results are
reported in Section 3 and consequently discussed in Section 5. Finally, conclusions are given in
Section 4.

2. Materials and Methods

2.1. Dataset

In this work, we enrolled 51 patients with idiopathic PD. All of them are Czech native speakers
(17 females and 34 males; age: 65.47 ± 7.46 years; PD duration: 7.61 ± 4.01 years; mean LED (L-dopa
equivalent daily dose) [32]: 1033.67± 567.96 mg/day) at the First Department of Neurology, St. Anne’s
University Hospital in Brno, Czech Republic. After two years, the patients were re-examined (age:
67.61 ± 7.38 years; PD duration: 9.57 ± 4.50 years; mean LED: 1115.11 ± 484.38 mg/day). All patients
signed an informed consent form that has been approved (including the study) in 14 March 2016 by
the Research Ethics Committee of Masaryk University (ref. no.: EKV-2016-004, project title: Effects
of non-invasive brain stimulation on hypokinetic dysarthria, micrographia, and brain plasticity in
patients with Parkinson’s disease, investigator: Prof. MD. Irena Rektorova, PhD.).

None of the patients had a disease affecting the central nervous system other than PD. All patients
were examined on their regular dopaminergic medication approximately 1 h after the L-dopa [32]
dose. The following rating scales were used to evaluate the clinical symptoms of PD: UPDRS III
and UPDRS IV [3], FOG-Q [4], REM sleep behavior disorder screening questionnaire (RBDSQ) [33],
and ACE-R [5]. The full clinical characteristics of the dataset, i e., mean ± sd values for the clinical
rating scales in session 1, session 2, and session ∆ (session 2 − session 1) can be seen in Table 1.
Moreover, to identify statistically significant differences, the table reports p-values of the Wilcoxon
signed-rank test between the data acquired in session 1 (baseline examination) and session 2 (two-year
follow-up examination) too.

The clinical data from the ∆ session were also used to generate descriptive visualizations
(i.e., histograms, regression and residual plots) for the change in selected clinical rating scales,
more specifically: LED, UPDRS III, UPDRS IV, FOG-Q, RBDSQ, ACE-R, see Figure 1. With this approach,
it is possible to assess the improvement and/or decline in motor and non-motor deficits associated
with PD in the horizon of two years as well as a relationship between the change in each of the scales
relative to other scales in the selected set.
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Table 1. Clinical characteristics of the patients.

Scale Mean ± sd (s1) Mean ± sd (s2) Mean ± sd (∆) p (Wilcoxon)

LED 917.61 ± 544.78 1129.92 ± 477.50 212.31 ± −67.28 0.188
UPDRS III 22.49 ± 13.47 27.45 ± 12.68 4.96 ± −0.79 0.000
UPDRS IV 2.82 ± 2.58 3.44 ± 2.94 0.62 ± 0.36 0.632
FOG-Q 6.57 ± 5.40 8.33 ± 5.97 1.76 ± 0.57 0.000
RBDSQ 3.98 ± 3.25 3.78 ± 2.28 −0.2 ± −0.98 0.522
ACE-R 87.92 ± 7.62 85.89 ± 9.48 −2.03 ± 1.86 0.000

s1—first session; s2—second session; ∆—delta session (session 2− session 1); p (Wilcoxon) — p-value
for Wilcoxon signed-rank test (paired samples); LED—L-dopa equivalent daily dose (mg/day) [32];
UPDRS III—Unified Parkinson’s Disease Rating Scale, part III: evaluation of motor function [3],
UPDRS IV—Unified Parkinson’s Disease Rating Scale, part IV: evaluation of complications of
therapy [3]; FOG-Q—Freezing of gait questionnaire [4]; RBDSQ—The REM sleep behavior disorder
screening questionnaire [33]; ACE-R—Addenbrooke’s Cognitive Examination-Revised [5].
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Figure 1. Descriptive statistical graphs of clinical characteristics of the PD patient dataset: on the
main diagonal, histograms are visualized. Next, the upper triangular part of the graph-grid shows
scatter plots with the fitted lines of linear regression models. Finally, the lower triangular part of the
graph-grid is used to display residuals for the models shown in the upper grid. Color notation: the blue
color represents data for session 1, and the green color represents data for session 2.
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2.2. Vocal Tasks

To quantify the deterioration of phonation in patients with PD, we used a sustained phonation
of vowels: /a/, /e/, /i/, /o/, /u/ as a basis for our experiments. The reason behind using all of
the five vowels is to employ the analysis with the emphasis on quantifying all positions of a tongue
during phonation. For more information, see the Hellwag (vowel) triangle [34]. In our view, using
only a sustained phonation of the vowel /a/ is not fully justified as there is very little or no reason
to assume that this particular position of the tongue can provide more information about phonatory
disorders. In fact, as shown by previous studies, the analysis of other vowels is important for a more
robust description of HD [19–21,23,24,35–37].

Sustained phonation of a vowel is a standard measure used to assess quality of phonation [9].
During this particular vocal task, a speaker is asked to sustain phonation of a vowel, attempting to
maintain steady frequency and amplitude at a comfortable level [38]. The advantage of this task
in comparison with other commonly used vocal tasks is its independence of articulatory and other
linguistic confounds [38]. Moreover, it is also present in most of the databases and therefore the
experiments proposed in our work are comparable with other commonly used databases [39,40].

The sustained phonation task used in this study is a part of a speech acquisition protocol derived
from the standardized 3F Dysarthria Profile [41]. During the data acquisition, a large capsule cardioid
microphone M-AUDIO Nova (Cumberland, RI, United States) mounted to a boom arm RODE PSA1
(Silverwater, Australia) and positioned at a distance of approximately 20 cm from the patient’s
mouth was used for the recording. Consequently, the signals were digitized by audio interface
M-AUDIO Fast Track Pro (Cumberland, RI, United States) with the sampling frequency of 48 kHz
(16-bit resolution) and checked by a trained acoustic engineer without having seen the patient’s clinical
data. Finally, the signals were parameterized using Praat [42] software as well as a set of MATLAB
(MATLAB 9.4, MathWorks, Natick, MA, United States) parametrization functions [43] developed at
the Brno University of Technology.

2.3. Acoustic Features

To describe a variety of phonatory disorders associated with HD, we quantified the
following: (a) microperturbations in frequency of voice using period perturbation quotient (PPQ);
(b) microperturbations in intensity of voice using amplitude perturbation quotient (APQ); (c) irregular
pitch fluctuations using coefficient of variation of fundamental frequency (F0 (CV)); (d) irregular
amplitude fluctuations using coefficient of variation of Teager–Kaiser operator (TKEO (CV)); (e) tremor
of articulatory organs (such as jaw, tongue and lips), coefficient of variation of 1st formant (F1 (CV)),
coefficient of variation of 2nd formant (F2 (CV)), coefficient of variation of 3rd formant (F3 (CV));
(f) increased acoustic noise using median of harmonic-to-noise ratio (HNR (Q2)), median of energy
ratio (ER (Q2), energy ratio of bands 2000–4000 Hz and 70–900 Hz)), median of glottal-to-noise
excitation ratio (GNE (Q2)), median of normalized noise energy (NNE (Q2)); (g) irregular acoustic
noise fluctuations using standard deviation of harmonic-to-noise ratio (HNR (SD)), coefficient of
variation of energy ratio (ER (CV)), standard deviation of glottal-to-noise excitation ratio (GNE (SD)),
standard deviation of normalized noise energy (NNE (SD)); and (h) aperiodicity of voice using fraction
of locally unvoiced frames (FLUF). All of these features are standard and clinically interpretable
dysphonic measures and were selected based on a recommendation given in our recent review on
acoustic analysis of voice/speech signals in patients suffering from HD [9]. For more information
about the voice/speech parametrization, see [43].

2.4. Statistical Analysis

Before describing the analytical setup applied in this work, it is important to mention that the
dataset did not contain any missing values, and therefore all data samples were used. Furthermore,
even though we used six clinical rating scales when describing the dataset (see Section 2.1), only four
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of these scales were used for the analysis, specifically: UPDRS III, UPDRS IV, RBDSQ, and FOG-Q.
The reason is that previous studies have already shown that non-motor manifestations of PD are
not linked with the phonatory aspects of HD, but rather with the impairments of prosody and
articulation [44] that are commonly being quantified using a sentence reading task, free speech
(monologue), etc. Since this study is focused on the phonatory aspects of HD, clinical rating scales
describing only motor symptoms of PD were used.

To reveal and assess the strength of a relationship between the computed acoustic features and
patients’ clinical data (UPDRS III, UPDRS IV, RBDSQ, and FOG-Q), Spearman’s correlation coefficient
was computed (the statistical assumptions for Spearman’s correlation coefficient were satisfied as:
(a) the acoustic features as well as the the clinical data are both variables that are measured on at
least an ordinal scale, and (b) there is a monotonic relationship between the two variables). Since age,
gender, and probably L-dopa, are manifested in a voice of PD patients [9], for the purpose of this work,
we employed partial Spearman’s correlation controlling for the effect of the following confounding
factors (also known as covariates): patients’ age, gender [29,45], and dopaminergic medication [32,46].
The significance level of correlation was set to 0.05. More specifically, two correlation scenarios were
considered: (a) correlation between the acoustic features at the baseline and the change in values
of the selected clinical rating scales, and (b) correlation between the change in the acoustic features
and the change in the values of the selected clinical rating scales. With this approach, we aimed
at identifying those acoustic features that are significantly correlated with the specific motor and
non-motor symptoms assessed by the selected clinical rating scales in both scenarios.

Next, to evaluate the power of the acoustic features at the baseline to predict the change of the
patients’ clinical data in the horizon of two years, we used the acoustic features computed for the
recordings acquired in session 1 (baseline examination) and built mathematical models predicting
the change in the selected clinical rating scales (∆). For this purpose, we employed Gradient Boosted
Trees (more specifically, the famous XGBoost algorithm [47]) in a supervised learning setup: 10-fold
cross-validation with 20 repetitions [48]. The XGBoost algorithm belongs to the state-of-the-art in
machine learning, which is supported by the fact that it has been recently used to win competitions on
Kaggle. It works well even on small datasets (where it outperforms deep learning approaches), it is
robust to outliers and it is able to model complex interdependencies. For these reasons, it has been
used by many researchers in various biomedical fields, e.g., [49–51], etc.

The performance of the models (precision of the predictions) was evaluated by MAE and
estimation error rate (EER). These measures are defined as:

MAE =
1
n

n

∑
i=1
|yi − ŷi|,

EER =
1

n · r
n

∑
i=1
|yi − ŷi| · 100 [%],

where yi stands for the true label of i-th observation, ŷi represents the predicted label of the i-th
observation, n denotes the number of observations, and finally r stands for the range of values in the
predicted clinical rating scale (not the range that can be theoretically reached, but the actual range of
the values in the dataset). As can be seen, EER therefore describes a percentage of error predictions
with respect to statistical properties of the dataset, which is particularly useful for easy interpretation
of the results.

3. Results

The values of 16 acoustic features extracted from both sessions, as well as values of their differences
(session 2 − session 1), are reported in Table 2. Based on the Wilcoxon signed-rank test, we can observe
that none of the features extracted from vowel /a/ significantly changed after two years. Regarding
vowel /e/, we identified significantly increased microperturbations in intensity of voice and also
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increased aperiodicity. The same significant changes were identified in vowel /i/ and /u/. In the
case of vowel /u/, in addition, we monitored the increase of microperturbations in frequency of voice.
The repeated acquisition of vowel /o/ was associated with increased aperiodicity and more dominant
microperturbations in frequency of voice.

Table 2. Statistical description of acoustic features for all vocal tasks.

Feature Mean ± sd (s1) Mean ± sd (s2) Mean ± sd (∆) p (Wilcoxon)

vowel /a/

PPQ 1.31 ± 1.28 1.89 ± 2.52 0.58 ± 1.24 0.069
APQ 10.69 ± 4.23 12.81 ± 6.66 2.12 ± 2.42 0.063
FLUF 3.87 ± 5.28 4.77 ± 5.61 0.90 ± 0.32 0.386

HNR (Q2) 13.35 ± 2.90 12.81 ± 3.73 −0.54 ± 0.83 0.390
HNR (SD) 4.17 ± 0.86 4.18 ± 0.89 0.02 ± 0.03 0.928

F1 (CV) 0.15 ± 0.06 0.18 ± 0.10 0.02 ± 0.04 0.180
F2 (CV) 0.22 ± 0.15 0.23 ± 0.15 0.00 ± 0.00 0.913
F3 (CV) 8.25 ± 40.44 4.50 ± 21.67 −3.75 ± −18.77 0.575
ER (Q2) 6.98 ± 33.97 7.40 ± 36.43 0.42 ± 2.46 0.954
ER (CV) 0.57 ± 0.26 0.57 ± 0.30 0.01 ± 0.05 0.880
F0 (CV) 0.30 ± 0.74 0.36 ± 1.15 0.06 ± 0.41 0.763

GNE (Q2) −0.46 ± 1.85 −0.46 ± 1.85 0.00 ± −0.00 0.997
GNE (SD) 0.23 ± 0.74 0.30 ± 0.97 0.07 ± 0.23 0.679
TEO (CV) −0.34 ± 1.71 −0.31 ± 1.75 0.03 ± 0.04 0.931
NNE (Q2) −1.45 ± 7.41 −1.33 ± 7.08 0.13 ± −0.34 0.932
NNE (SD) 1.80 ± 0.76 1.79 ± 0.78 −0.01 ± 0.02 0.955

vowel /e/

PPQ 1.31 ± 1.17 1.80 ± 3.06 0.50 ± 1.89 0.269
APQ 11.21 ± 6.82 15.05 ± 9.95 3.84 ± 3.13 0.036
FLUF 2.62 ± 3.58 5.31 ± 6.02 2.69 ± 2.44 0.007

HNR (Q2) 14.36 ± 3.92 13.75 ± 4.40 −0.61 ± 0.48 0.394
HNR (SD) 4.19 ± 0.96 4.32 ± 1.18 0.13 ± 0.21 0.533

F1 (CV) 0.62 ± 0.23 0.56 ± 0.24 −0.05 ± 0.01 0.173
F2 (CV) 0.19 ± 0.07 0.19 ± 0.09 −0.00 ± 0.02 0.965
F3 (CV) 12.41 ± 86.28 7.06 ± 48.94 −5.36 ± −37.34 0.709
ER (Q2) 3.46 ± 23.30 3.39 ± 22.83 −0.07 ± −0.47 0.989
ER (CV) 0.59 ± 0.28 0.61 ± 0.37 0.02 ± 0.10 0.702
F0 (CV) 0.42 ± 1.47 0.19 ± 0.50 −0.24 ± −0.97 0.293

GNE (Q2) −0.36 ± 1.77 −0.17 ± 1.18 0.19 ± −0.59 0.536
GNE (SD) 0.08 ± 0.36 0.06 ± 0.30 −0.02 ± −0.07 0.726
TEO (CV) −0.07 ± 0.50 −0.19 ± 1.31 −0.11 ± 0.80 0.571
NNE (Q2) −0.19 ± 1.35 −0.21 ± 1.44 −0.01 ± 0.10 0.961
NNE (SD) 1.67 ± 0.56 1.83 ± 0.61 0.17 ± 0.05 0.055

vowel /i/

PPQ 1.26 ± 1.68 1.92 ± 3.08 0.66 ± 1.40 0.196
APQ 10.49 ± 5.31 14.83 ± 9.65 4.35 ± 4.34 0.005
FLUF 2.13 ± 3.73 4.60 ± 6.89 2.46 ± 3.15 0.013

HNR (Q2) 17.16 ± 3.38 16.17 ± 5.32 −0.98 ± 1.95 0.212
HNR (SD) 4.51 ± 1.12 4.53 ± 1.40 0.02 ± 0.28 0.921

F1 (CV) 0.67 ± 0.48 0.58 ± 0.40 −0.09 ± −0.08 0.170
F2 (CV) 0.14 ± 0.07 0.16 ± 0.08 0.02 ± 0.00 0.088
F3 (CV) 0.09 ± 0.21 38.22 ± 207.82 38.14 ± 207.61 0.205
ER (Q2) 0.09 ± 0.08 8.35 ± 33.15 8.27 ± 33.07 0.087
ER (CV) 0.61 ± 0.37 0.56 ± 0.44 −0.05 ± 0.07 0.490
F0 (CV) 0.36 ± 1.39 0.35 ± 1.17 −0.01 ± −0.22 0.961

GNE (Q2) −0.30 ± 1.49 −0.30 ± 1.48 0.01 ± −0.01 0.980
GNE (SD) 0.07 ± 0.32 0.12 ± 0.40 0.06 ± 0.08 0.449
TEO (CV) 0.78 ± 0.55 0.36 ± 2.47 −0.42 ± 2.47 0.238
NNE (Q2) −0.01 ± 0.18 −0.20 ± 11.53 −0.19 ± 1.15 0.228
NNE (SD) 1.44 ± 0.55 1.40 ± 0.70 −0.05 ± 0.15 0.727
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Table 2. Cont.

Feature Mean ± sd (s1) Mean ± sd (s2) Mean ± sd (∆) p (Wilcoxon)

vowel /o/

PPQ 1.14 ± 1.06 1.68 ± 2.06 0.54 ± 0.99 0.047
APQ 11.09 ± 4.41 14.16 ± 9.94 3.06 ± 5.53 0.051
FLUF 2.64 ± 4.32 5.63 ± 7.24 2.99 ± 2.91 0.008

HNR (Q2) 15.49 ± 3.30 15.28 ± 4.79 −0.22 ± 1.49 0.773
HNR (SD) 4.93 ± 1.14 4.57 ± 1.36 −0.36 ± 0.21 0.149

F1 (CV) 0.24 ± 0.19 0.31 ± 0.22 0.06 ± 0.03 0.091
F2 (CV) 0.14 ± 0.10 0.14 ± 0.10 0.00 ± 0.01 0.867
F3 (CV) 8.75 ± 35.36 23.86 ± 96.34 15.11 ± 60.97 0.317
ER (Q2) 8.17 ± 32.52 8.07 ± 32.42 −0.10 ± −0.10 0.989
ER (CV) 0.64 ± 0.39 0.61 ± 0.36 −0.03 ± −0.02 0.705
F0 (CV) 0.40 ± 0.91 0.63 ± 1.81 0.24 ± 0.89 0.434

GNE (Q2) −0.91 ± 2.72 −1.25 ± 3.11 −0.35 ± 0.39 0.582
GNE (SD) 0.30 ± 0.75 0.39 ± 0.90 0.09 ± 0.15 0.580
TEO (CV) −0.74 ± 3.27 −0.28 ± 1.30 0.46 ± −1.97 0.376
NNE (Q2) −0.19 ± 0.79 −0.11 ± 0.47 0.09 ± −0.31 0.530
NNE (SD) 1.62 ± 0.83 1.58 ± 0.91 −0.04 ± 0.08 0.843

vowel /u/

PPQ 1.35 ± 1.17 2.60 ± 3.07 1.26 ± 1.90 0.009
APQ 12.66 ± 5.60 17.03 ± 9.50 4.37 ± 3.91 0.007
FLUF 2.77 ± 5.13 8.52 ± 9.83 5.75 ± 4.69 0.001

HNR (Q2) 15.28 ± 4.23 14.32 ± 5.22 −0.96 ± 0.99 0.270
HNR (SD) 5.40 ± 1.56 5.08 ± 1.46 −0.32 ± −0.10 0.252

F1 (CV) 0.69 ± 0.44 0.71 ± 0.34 0.03 ± −0.10 0.667
F2 (CV) 0.17 ± 0.09 0.18 ± 0.09 0.01 ± −0.00 0.468
F3 (CV) 10.28 ± 52.21 15.04 ± 104.80 4.76 ± 52.58 0.779
ER (Q2) 8.27 ± 33.82 3.63 ± 25.29 −4.64 ± −8.53 0.453
ER (CV) 0.67 ± 0.39 0.74 ± 0.43 0.06 ± 0.04 0.431
F0 (CV) 0.23 ± 0.67 0.18 ± 0.10 −0.05 ± −0.57 0.586

GNE (Q2) −0.19 ± 1.31 0.00 ± 0.00 0.19 ± −1.31 0.323
GNE (SD) 0.09 ± 0.40 0.10 ± 0.70 0.01 ± 0.30 0.966
TEO (CV) −0.51 ± 2.69 −0.07 ± 0.51 0.43 ± −2.18 0.275
NNE (Q2) −1.27 ± 7.09 −0.31 ± 2.190 0.96 ± −4.91 0.373
NNE (SD) 1.57 ± 0.73 1.68 ± 0.49 0.11 ± −0.24 0.379

The results of Spearman’s partial correlation between the baseline acoustic features (session 1)
and change in clinical data (∆) can be seen in Table 3. None of the features significantly correlated
with UPDRS, part III. On the other hand, in the case of part IV, we can observe negative correlation
with aperiodicity (FLUF, vowels /e/, /i/, /o/, /u/), i.e., low aperiodicity at the baseline resulted in
increased complications with therapy. Similarly, we identified negative correlation with tremor of jaw
(F2 (CV), vowel /a/), but positive correlation with the tremor of lips (F3 (CV), vowel /o/). Another
positive correlations were observed with median of energy ratio (vowels /o/, /u/), irregular pitch
fluctuations (F0 (CV), vowel /a/), and variability of voice quality (GNE (SD), vowel /a/). Change
in UPDRS IV negatively correlated with irregular amplitude fluctuations (TEO (CV), vowel /u/),
acoustic noise (NNE (Q2), vowel /u/) and its variation (NNE (SD), vowel /a/). Results linked with
the acoustic noise quantified by the median GNE are not consistent.

RBDSQ significantly and positively correlated with microperturbations in frequency of voice (PPQ,
vowel /u/) and microperturbations of its intensity (APQ, vowel /a/), i.e., increased microperturbations
in frequency/amplitude at the baseline resulted in deterioration of sleep. In addition, RBDSQ
negatively correlated with the variation of voice quality (HNR (SD), vowel /o/).

Regarding gait difficulties, as assessed by FOG-Q, we can observe two positive correlations with
tremor of jaw (F1 (CV), vowel /i/) and irregular pitch fluctuations (F0 (CV), vowel /a/). The total score
of this questionnaire negatively correlates with variation of acoustic noise (NNE (SD), vowel /o/).
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Table 3. Spearman’s correlation coefficients between baseline acoustic features and ∆ of clinical data.

Feature /a/ /e/ /i/ /o/ /u/ /a/ /e/ /i/ /o/ /u/

UPDRS III UPDRS IV

PPQ −0.07 −0.08 0.26 −0.09 −0.10 −0.11 −0.26 −0.08 −0.17 −0.08
APQ −0.06 −0.05 0.17 −0.10 −0.09 0.08 0.12 −0.01 0.06 −0.09
FLUF 0.10 0.08 0.11 0.10 0.16 −0.23 −0.47 ** −0.33 * −0.34 * −0.32 *
HNR (Q2) 0.16 0.07 −0.05 0.17 0.09 −0.02 −0.08 0.07 0.11 0.16
HNR (SD) 0.10 0.11 −0.04 −0.05 −0.15 0.07 −0.02 0.20 −0.22 −0.09
F1 (CV) 0.04 0.10 −0.17 −0.02 0.19 −0.27 −0.07 0.08 −0.32 * 0.08
F2 (CV) −0.15 0.20 −0.10 −0.11 0.11 −0.37 * −0.11 −0.12 −0.23 0.04
F3 (CV) −0.24 0.25 −0.23 −0.17 0.11 0.22 0.28 0.10 0.32 * 0.10
ER (Q2) −0.25 0.25 −0.14 −0.17 0.17 0.16 0.28 0.12 0.34 * 0.32 *
ER (CV) 0.12 −0.09 0.22 −0.03 0.11 −0.17 −0.14 −0.22 −0.18 −0.06
F0 (CV) 0.28 −0.12 0.04 −0.08 0.17 0.33 * −0.04 −0.24 −0.16 −0.21
GNE (Q2) −0.14 0.11 −0.15 0.06 −0.17 −0.35 * 0.25 0.15 0.27 0.33 *
GNE (SD) −0.16 −0.08 −0.12 −0.22 0.24 0.30 * −0.01 −0.04 0.22 0.11
TEO (CV) 0.28 −0.25 0.11 0.15 −0.25 −0.23 −0.28 −0.28 −0.23 −0.30 *
NNE (Q2) 0.28 −0.25 −0.09 0.14 −0.23 −0.15 −0.28 −0.22 −0.26 −0.31 *
NNE (SD) 0.09 −0.25 0.12 0.11 −0.26 −0.43 ** −0.17 −0.28 −0.12 −0.12

RBDSQ FOG-Q

PPQ 0.15 0.11 0.21 −0.13 0.33 * −0.20 −0.09 0.15 −0.09 0.08
APQ 0.29 * 0.27 0.21 0.27 0.20 −0.18 −0.14 −0.16 −0.16 −0.12
FLUF −0.06 0.06 −0.22 −0.17 −0.24 0.20 0.15 0.13 0.17 0.23
HNR (Q2) −0.20 −0.17 −0.19 −0.27 −0.20 0.09 0.03 −0.03 0.09 −0.05
HNR (SD) −0.17 −0.16 0.21 −0.36 * −0.27 0.07 0.24 0.21 0.18 0.12
F1 (CV) 0.08 −0.02 0.24 0.09 0.11 0.16 −0.22 0.33 * −0.20 −0.20
F2 (CV) −0.08 −0.09 −0.26 −0.17 −0.27 0.18 −0.09 −0.03 −0.13 0.26
F3 (CV) −0.10 −0.04 −0.11 0.07 −0.08 0.03 0.22 0.14 0.08 −0.11
ER (Q2) −0.19 −0.21 −0.26 −0.12 −0.16 −0.13 0.04 0.25 0.10 −0.05
ER (CV) 0.08 0.28 0.20 −0.28 −0.11 0.04 −0.13 −0.11 0.10 0.06
F0 (CV) 0.21 0.13 0.19 0.25 0.10 0.37 * 0.20 −0.03 −0.10 0.19
GNE (Q2) −0.16 −0.17 −0.28 −0.18 −0.16 −0.29 −0.25 0.05 −0.19 −0.19
GNE (SD) −0.05 −0.09 −0.25 0.09 −0.20 0.08 0.14 −0.05 0.12 0.15
TEO (CV) 0.05 0.04 0.27 −0.17 0.15 −0.05 −0.22 −0.07 −0.25 −0.01
NNE (Q2) 0.24 0.28 0.18 0.20 0.21 −0.04 0.21 0.17 0.16 0.20
NNE (SD) −0.27 −0.05 −0.19 −0.16 0.11 −0.23 −0.12 0.16 −0.22 ** 0.05

*—p-value of Spearman’s correlation coefficient <0.05; **—p-value of Spearman’s correlation
coefficient <0.01.

The results of Spearman’s partial correlation between the change of baseline acoustic features
(∆) and the change in clinical data (∆) can be seen in Table 4. Regarding the change of UPDRS III,
it negatively correlated with the change of microperturbations in frequency of voice (PPQ, vowel /i/),
aperiodicity (FLUF, vowels /e/, /o/), tremor of tongue (F1 (CV), vowels /a/, /u/), tremor of jaw (F2
(CV), vowel /e/), irregular pitch fluctuations (F0 (CV), vowels /a/, /u/), and variation of acoustic
noise (NNE (SD), vowel /i/). Significant positive correlations were identified with the change of lips
tremor (F3 (CV), vowel /a/), acoustic noise (ER (Q2), vowel /a/), and variation of voice quality (GNE
(SD), vowel /e/).

In the case of UPDRS IV, we identified seven significant positive correlations with the change
of microperturbations in frequency of voice (PPQ, vowel /e/), tremor of jaw (F2 (CV), vowel /a/),
irregular amplitude fluctuations (TEO (CV), vowels /a/, /u/), and acoustic noise (NNE (Q2), vowels
/o/, /u/). The change in UPDRS IV significantly negatively correlated with the change of acoustic
noise (ER (Q2), vowel /u/), and its variation (ER (CV), vowel /e/).

Changes in RBDSQ significantly negatively correlated with the change of microperturbations
in frequency of voice (PPQ, vowel /u/), microperturbations of its intensity (APQ, vowels /e/, /i/,
/u/), tremor of lips (F3 (CV), vowel /o/), acoustic noise (NNE (Q2), vowel /e/), and its variation (ER
(CV), vowel /e/). Positive correlations were identified with the change in voice quality (HNR (Q2),
all vowels) and its variability (HNR (SD), vowels /e/, /o/, /u/). The similar results can be observed
when assessing the quality by GNE (vowel /e/).
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Finally, in terms of changes in FOG-Q, we identified significant negative correlations with the
change in aperiodicity (FLUF, vowels /a/, /e/, /o/, /u/), tremor of jaw (F1 (CV), vowel /i/),
tremor of tongue (F2 (CV), vowel /u/), and variation of acoustic noise (ER (CV), vowels /e/, /i/).
One significant positive correlation can be observed with the change in acoustic noise variation (NNE
(SD), vowel /o/). The results based on irregular amplitude fluctuations (TEO (CV)) are not consistent.

Table 4. Spearman’s correlation coefficients between ∆ of acoustic features and ∆ of clinical data.

Feature /a/ /e/ /i/ /o/ /u/ /a/ /e/ /i/ /o/ /u/

UPDRS III UPDRS IV

PPQ −0.12 −0.20 −0.31 * 0.10 −0.13 0.09 0.40 ** 0.25 0.21 0.10
APQ −0.17 −0.14 −0.26 −0.06 −0.15 0.06 0.08 0.10 0.06 0.03
FLUF −0.27 −0.30 * −0.15 −0.40 ** −0.25 0.17 0.21 0.28 0.04 0.21
HNR (Q2) −0.04 0.08 0.22 −0.07 0.09 −0.02 −0.03 −0.14 −0.14 −0.17
HNR (SD) 0.12 −0.18 −0.25 −0.05 0.19 −0.10 0.08 −0.21 −0.08 0.13
F1 (CV) −0.35 * −0.26 −0.04 −0.28 −0.38 ** 0.05 −0.04 −0.07 −0.02 −0.11
F2 (CV) 0.13 −0.34 * −0.22 −0.07 −0.23 0.39 ** 0.07 −0.07 0.28 0.21
F3 (CV) 0.29 * −0.19 0.22 0.24 −0.09 −0.16 −0.12 −0.21 −0.21 −0.10
ER (Q2) 0.31 * −0.15 0.04 0.26 −0.13 −0.11 −0.07 −0.16 −0.27 −0.29 *
ER (CV) −0.23 −0.05 −0.16 −0.17 0.05 −0.08 −0.33 * 0.12 −0.04 0.14
F0 (CV) −0.32 * 0.18 0.21 −0.19 −0.30 * −0.15 0.12 0.15 −0.13 0.15
GNE (Q2) 0.27 −0.22 −0.22 0.20 0.17 0.17 −0.18 −0.15 0.11 −0.27
GNE (SD) 0.16 0.32 * 0.23 0.14 −0.25 −0.18 0.10 −0.07 −0.25 −0.05
TEO (CV) −0.23 −0.18 −0.11 −0.13 0.23 0.29 * −0.13 0.28 0.28 0.30 *
NNE (Q2) −0.25 0.14 −0.12 −0.19 0.20 0.10 0.16 0.24 0.30 * 0.31 *
NNE (SD) −0.12 0.05 −0.42 ** −0.06 0.11 0.29 * 0.15 0.16 0.24 0.16

RBDSQ FOG-Q

PPQ −0.23 −0.19 −0.16 −0.17 −0.37 * 0.15 −0.17 −0.18 0.12 −0.10
APQ −0.28 −0.37 * −0.38 ** −0.29 −0.32 * 0.08 0.08 0.06 0.14 0.09
FLUF 0.05 −0.06 0.06 0.10 −0.18 −0.41 ** −0.29 * −0.10 −0.35 * −0.40 **
HNR (Q2) 0.29 * 0.35 * 0.31 * 0.36 * 0.41 ** 0.15 0.11 0.12 0.02 0.04
HNR (SD) 0.23 0.36 * 0.10 0.40 ** 0.30 * −0.06 0.07 −0.18 −0.20 0.01
F1 (CV) −0.23 0.04 −0.12 0.06 −0.16 −0.29 −0.04 −0.42 ** 0.12 0.13
F2 (CV) −0.06 0.08 0.16 0.17 0.06 −0.27 −0.08 −0.20 −0.09 −0.37 *
F3 (CV) 0.07 0.15 −0.25 −0.40 ** −0.10 −0.07 0.18 0.09 −0.08 0.20
ER (Q2) 0.17 0.23 −0.27 −0.27 0.09 0.12 0.26 −0.06 −0.21 0.17
ER (CV) −0.10 −0.46 ** 0.06 0.28 −0.11 −0.00 −0.30 * −0.34 * 0.08 −0.19
F0 (CV) −0.17 −0.14 −0.17 −0.12 −0.11 −0.23 −0.17 0.20 −0.05 −0.23
GNE (Q2) 0.13 0.30 * 0.25 0.13 0.15 0.20 0.17 −0.21 0.07 0.27
GNE (SD) 0.04 0.40 ** −0.23 −0.23 0.25 −0.07 0.14 0.24 −0.03 0.14
TEO (CV) −0.06 −0.25 0.24 0.25 −0.18 0.06 −0.37 * −0.17 0.34 * −0.20
NNE (Q2) −0.15 −0.42 ** 0.24 0.27 −0.23 −0.20 −0.28 −0.05 0.25 −0.13
NNE (SD) 0.25 0.02 0.20 0.24 −0.15 0.18 0.10 −0.25 0.06 ** −0.15

*—p-value of Spearman’s correlation coefficient <0.05; **—p-value of Spearman’s correlation
coefficient <0.01.

The results of the clinical scales’ estimation are reported in Table 5. Using the acoustic analysis of
sustained phonation of the baseline vowel /e/ in combination with mathematically modeling based
on the XGBoost algorithm, we estimated the change in UPDRS III score with 25.7% error (MAE = 7.3,
range(UPDRS III ∆) = 29). The change in UPDRS IV was estimated with the lowest error equal to
11.3% (MAE = 1.7, range(UPDRS IV ∆) = 15) when employing acoustic analysis of the baseline vowel
/o/. The change in RBDSQ was estimated with 16.3% error (MAE = 2.0, range(RBDSQ ∆) = 13) based
on phonatory analysis of vowel /i/. Finally, the lowest error of FOG-Q change estimation is 13.2%
(MAE = 2.8, range(FOG-Q ∆) = 22). In this case, the acoustic analysis of vowel /u/ outperformed the
other ones.
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Table 5. Results of the clinical scales’ estimation.

VT MAE EER [%] MAE EER [%] MAE EER [%] MAE EER [%]

UPDRS III UPDRS IV RBDSQ FOG-Q

/a/ 8.2 ± 2.6 29.1 ± 9.2 1.9 ± 0.6 12.9 ± 4.1 2.2 ± 1.0 17.6 ± 8.1 3.1 ± 0.8 14.7 ± 3.8
/e/ 7.3 ± 2.0 25.7 ± 7.0 1.8 ± 0.7 12.2 ± 4.8 2.0 ± 0.8 16.4 ± 6.9 3.4 ± 1.0 16.1 ± 5.0
/i/ 7.4 ± 2.7 26.3 ± 9.4 1.9 ± 0.8 12.9 ± 5.5 2.0 ± 0.7 16.3 ± 6.3 2.9 ± 0.7 13.6 ± 3.6
/o/ 7.9 ± 2.1 28.2 ± 7.7 1.7 ± 0.7 11.3 ± 4.8 2.1 ± 0.8 16.8 ± 6.3 3.3 ± 0.5 15.4 ± 2.6
/u/ 7.7 ± 2.5 27.2 ± 8.8 2.0 ± 0.8 13.8 ± 5.5 2.1 ± 0.9 17.3 ± 7.2 2.8 ± 0.9 13.2 ± 4.5

VT—vocal task; MAE—mean absolute error; EER—estimation error rate.

Due to inter-rater variability as well as intra-rater variability [52–54], consistent scoring of PD
using the commonly used clinical rating scales is not an easy task. Automatic scoring, i.e., the estimation
of the values of the clinical rating scales must be viewed as a tool that can provide clinicians with
an additional, unbiased, and objective information that can help them with their decision-making,
not as a tool that will substitute the work of clinicians. With this in mind, the predictions made by the
trained XGBoost models can be considered rather reasonable as the error of 10–20% is comparable
with a deviation caused by inter/intra-rater variability. Moreover, each clinical rating scale is different.
On one hand, there are complex scales such as UPDRS III describing various motor aspects of PD,
and, on the other hand, there are scales specifically focusing on a subset of its symptoms, e.g., FOG-Q
(gait difficulties), RBDSQ (sleep disorders), etc. This information must be taken into account when
evaluating the prediction errors because, the more complex the scale is, the more difficult it becomes to
predict its values. This can be seen in our results as well. The most complex of the scales was predicted
with the largest prediction error.

Feature importances of the SGBoost models are visualized in Figure 2. The figure shows the
feature importances for all of the trained models. Feature importances quantify a relative importance
of the features in the ensemble of the trained XGBoost model [47]. Therefore, the higher the value of
the feature importance, the more important the feature is for the prediction of the dependent variable.
With this in mind, the rationale behind this visualization is to show which features are important,
and how strong that importance is, for the trained models in direction of predicting the change in the
particular clinical rating scales in the horizon of two years given the acoustic features at the baseline.

Based on these graphs, we can conclude that the estimation of UPDRS III change requires
a complex parametrization because, in all scenarios, at least 13 acoustic features were employed. In this
case, especially median NNE was not frequently used. Although the models estimate the change of
UPDRS IV with the lowest error, they usually use just a few phonatory parameters. In fact, in the case
of vowel /o/, we observed 11.3% estimation error based on the following three phonatory features:
GNE (Q2), ER (Q2), and FLUF. Generally, these features quantify quality of voicing. The best estimation
of the RBDSQ change is based on eight phonatory parameters extracted from vowel /i/. The most
important features quantify tremor of jaw (F1 (CV)), aperiodicity (FLUF), and microperturbations in
intensity (APQ). Finally, based on the feature importances, we can observe that the most important
role in FOG-Q change estimation was played by formant frequencies quantifying tremor of the
articulatory organs.
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Figure 2. Feature importance graphs for trained XGBoost models. Each column shows graphs for the
models trained to estimate the change (∆) in values of a particular clinical rating scale (UPDRS III,
UPDRS IV, RBDSQ, FOG-G). Each row shows graphs for the models trained using the features extracted
from the recordings of a particular vowel phonation (/a/, /e/, /i/, /o/, /u/). The scale of the graphs
is unified so that it is easier to compare the values among the models.

4. Discussion

Although the only existing longitudinal study [31] is different in the interval between sessions
(32.5 vs. 24.0 months), we are going to compare our findings with the results reported by these authors.
In contrary to Skodda et al., who observed significant change in shimmer of the sustained phonation of
vowel /a/, we have not identified any significant differences in this vowel. Nevertheless, we identified
significant changes in the same feature extracted from vowels /e/, /i/, /u/. In addition, we monitored
some significant changes in jitter and FLUF. Based on these results, we can conclude that, for two years,
patients’ voices became more aperiodic with increased microperturbations of frequency and amplitude.
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None of the acoustic features at baseline significantly correlated with a change in UPDRS III,
which supports the results of the clinical scales’ estimation where the lowest estimation error was
above 25%. However, we identified some significant correlations between changes of phonatory
features and the clinical scale. Surprisingly, except tremor of lips (F3 (CV)), acoustic noise (ER (Q2)),
and variation of voice quality (GNE (SD)), worsening in UPDRS III (motor performance) was associated
with improvement in phonatory characteristics. This could be explained by the fact that HD belongs to
axial symptoms [9,31] that do not play significant part in UPDRS III. In other words, although several
significant correlations were identified, we hypothesize that some underlying pathophysiological
mechanism are involved and a direct interpretation is not possible.

Regarding the change in complications of therapy (as assessed by UPDRS IV), although the most
significant correlations were observed with baseline features extracted from the vowel /a/, the lowest
estimation error (11%) was based on vowel /o/. In this case, low aperiodicity, but increased lips
tremor and increased acoustic noise at baseline, was associated with increased complications in the
follow-up examination.

Only three significant correlations are reported between baseline acoustic parameters (quantifying
microperturbations of frequency/amplitude and variation in voice quality) and change in RBDSQ.
Although we have not identified any significant correlations based on vowel /i/, the XGBoost
algorithm reached the lowest error (16%) including features calculated from this vowel. This result
could originate from the ability of XGBoost to model complex interdependencies that are not evident at
first sight [47]. Regarding the partial correlations between changes in RBDSQ and phonatory features,
we can conclude that mainly changes in voice aperiodicity and voice quality are linked with changes
in sleep disorders.

HD and freezing of gait (FOG) are both axial symptoms of PD [55]. In our recent work, we have
found out that these symptoms share some pathophysiological mechanism [56]. More specifically,
we proved that FOG is mainly linked with improper articulation, disturbed speech rate and with
intelligibility. We did not identify any significant relations between FOG and phonatory features.
On the other hand, we analyzed only the sustained vowel /a/ and partial correlations were calculated
only with some baseline FOG-Q sub-scores. The current study provides deeper and more complex
results in terms of FOG and phonatory features relations. The first correlation analysis (baseline
features vs. ∆FOG-Q) identified just a few significant correlations. However, based on mainly
formant frequencies extracted from vowel /u/, the XGBoost model estimated the change in FOG-Q
with 13% error. Generally, the significant impact of formants in this specific task is in line with
our previous study [56]. The second correlation analysis (∆ of the baseline features vs. ∆FOG-Q)
revealed some relations between changes in FOG and changes in aperiodicity, tremor of jaw/tongue,
and acoustic noise.

Although most of the studies dealing with the acoustic analysis of phonation in PD patients focus
on sustained vowel /a/, it is not sufficiently explained why this corner vowel is more important than
the other two, i.e., /i/ or /u/. Looking at the Hellwag (vowel) triangle [34], we can see that, during
phonation of vowel /a/, the tongue is in its lowest position from a vertical point of view, and in its
central position from a horizontal one. In other words, a speaker does not have to make an effort to
keep the tongue in a limit position (the tongue is almost relaxed). Therefore, some phonatory disorders
could not be accented. This limitation is not present in vowels /i/ or /o/, where the speaker has to
exert a force in both directions. On the other hand, the lowest limit position of jaw is reached during
the phonation of vowel /a/. In summary, although some research teams employed a more complex set
of vowels in their experiments [19–21,23,24,35–37], the vowel /a/ is still the most frequently used one.
However, this choice should be supported by a complex, robust, and multilingual study (theoretically,
the effect of culture and language plays no role here, but this should be proven as well). Based on
these assumptions, we have decided to explore significance of all five Czech vowels. In addition,
the results suggest that the progress of PD is reflected in each vowel differently. Moreover, each vowel
differently correlates with changes in scores of clinical scales. Finally, in our case, the best prediction of



Appl. Sci. 2018, 8, 2339 14 of 18

the change in the clinical rating scales under the focus have never been based on phonatory parameters
of the vowel /a/. If we have to choose one optimal candidate for considered clinical scores changes
prediction (see Table 5), it would be the corner vowel /i/, where the tongue is in limit position in
both directions.

In our previous works, we proved that HD shares some pathophysiological mechanisms with
other motor/non-motor features of PD. For instance, based on a combination of acoustic analysis
and machine learning approaches, it is possible to predict cognitive deficits or gait disorders [44,56].
Although in the frame of this research we explored only the field of phonation, our results confirm the
ability of acoustic HD analysis to predict the progress of PD. These findings and conclusions could
have practical applications in eHealth, mHealth and generally Health 4.0 systems that could be used
to remotely monitor and assess motor/non-motor deficits in PD patients.

5. Conclusions

This study deals with a quantitative analysis of changes in sustained phonation that has been
acquired twice (with a two-year interval) in 51 PD patients. These changes are linked with progress of
PD as assessed by three commonly used clinical scales. Finally, it explores a possibility of PD progress
prediction based on a combination of acoustic analysis and machine learning modeling.

Based on the reported results, we conclude that, for two years, patients’ voices became more
aperiodic with increased microperturbations of frequency and amplitude. Although we did not identify
many significant correlations between baseline values of phonatory features and changes in clinical
scores, the XGBoost algorithm was able to predict these changes with errors ranging from 11% (in
the case of UPDRS IV) to 26% (in the case of UPDRS III). These results accent the impact of acoustic
HD analysis in Health 4.0 systems. Next, we identified significant correlations between changes
in phonatory features and changes in clinical scores; however, probably due to some underlying
pathophysiological mechanisms and complex interdependencies, these relations are less interpretable.
Finally, our results suggest that the researchers should consider acoustic analysis of corner vowel /i/
instead of the corner vowel /a/.

Admittedly, the main limitation of this study is the small size of patient cohort. On the other hand,
longitudinal studies of PD patients are very time-consuming (the patients are usually examined by
several experts such as neurologists, clinical psychologists, and clinical speech therapists), physically
demanding (PD is a movement disorder, therefore it requires patients to make significant effort to get
into a hospital), and it is difficult to assess a large number of patients due to a low prevalence which is
estimated to 1.5% for people aged over 65 years [57]. In fact, as far as we know, this is the first complex
study analyzing changes in phonation and their relations with progress of PD based on such a big
dataset. Moreover, it is the first study employing acoustic analysis of phonation in combination with
machine learning modeling in order to predict the progress of PD. Nevertheless, our findings should
be confirmed by further scientific research that will include bigger cohorts.
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Abbreviations

The following abbreviations are used in this manuscript:

ACE-R Addenbrooke’s cognitive examination-revised
APQ amplitude perturbation quotient
CV coefficient of variation
EER estimation error rate
ER energy ratio
F0 fundamental frequency
Fi ith formant
FLUF fraction of locally unvoiced frames
FOG freezing of gait
FOG-Q freezing of gait questionnaire
GNE glottal-to-noise excitation ratio
HD hypokinetic dysarthria
HNR harmonic-to-noise ratio
LED L-dopa equivalent daily dose
MAE mean absolute error
NNE normalized noise energy
PD Parkinson’s disease
PPQ period perturbation quotient
Q2 second quartile (median)
RBDSQ REM sleep behavior disorder screening questionnaire
SD standard deviation
TKEO Teager–Kaiser energy operator
UPDRS III Unified Parkinson’s disease rating scale, part III: evaluation of motor functions
UPDRS IV Unified Parkinson’s disease rating scale, part IV: evaluation of complications of therapy
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