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ABSTRACT Graphomotor disabilities (GD) are present in up to 30% of school-aged children and are
associated with several symptoms in the field of kinematics. Although the basic kinematic features such
as velocity, acceleration, and jerk were proved to effectively quantify these symptoms, a recent body of
research identified that the theory of fractional calculus can be used to even improve the objective GD
assessment. The goal of this study is to extend the current knowledge in this field and explore the abilities
of several fractional order derivatives (FD) approximations to estimate the severity of GD in the children
population. We enrolled 85 children attending the 3rd and 4th grade of primary school, who performed a
combined loop task on a digitizing tablet. Their performance was rated by psychologists and the online
handwriting signals were parametrised by kinematic features utilising three FD approximations: Grünwald-
Letnikov’s, Riemann–Liouville’s, and Caputo’s. In this study, we showed the differences across the employed
FD approaches for the same kinematic handwriting features and their potential in GD analysis. The results
suggest that the Riemann-Liouville’s approximation in the field of quantitative GD analysis outperforms the
other ones. Using this approach, we were able to estimate the overall score with a low error of 0.65 points,
while the scale range is 4. In fact, the psychologists tend to make the error even higher.

INDEX TERMS Fractional calculus, fractional order derivatives, graphomotor difficulties, graphonomics,
online handwriting.

I. INTRODUCTION
Fractional calculus (FC) is a name of the theory of integrals
and derivatives of an arbitrary order [1]. The concept of frac-
tional operators has been introduced almost simultaneously
with the development of the classical differential, integral
or other well-known calculus [2]. It attracted the interest
of many famous mathematicians, including Euler, Liouville,
Laplace, Riemann, Grünwald, and Letnikov. The principles
of FC have been used in modeling of many physical and
chemical processes, as well as in modern engineering and
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science in general [3]–[5]. It has been advantageously used
during the modeling of different diseases such as the human
immunodeficiency virus (HIV) [6] or malaria [7]. Recently,
the FC has been significantly examined in computer vision,
particularly in image restoration, super-resolution, image seg-
mentation or motion estimation [8]. In line with this trend,
in our recent research, we developed new parametrisation
techniques of online handwriting (a handwritten signal with
temporal information) based on the application of the frac-
tional order derivatives (FD) [9]–[13].

It has been estimated that approximately 10–30% of
children experience graphomotor difficulties [20] such as
graphomotor production deficits, motor feedback difficulties
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(e. g. the pen’s tip location tracking problems), motor-
memory dysfunctions, etc. Considering that children
spend 31–60% of their school-time performing handwrit-
ing [21], the early identification of graphomotor disabilities
(GD) is crucial in the prevention of serious pedagogical
and psychological consequences [22]. Otherwise, a child’s
every-day life can be greatly affected starting with a lack
of motivation to write, a decrease in self-esteem in com-
bination with poor emotional well-being continuing to bad
attitude and behaviour, communication and social interaction
problems [23]. In some cases, it may result in being diag-
nosed with a serious neurodevelopmental disorder such as
developmental dysgraphia (DD) [24], [25]. To identify and
evaluate GD in school-aged children, several well-established
questionnaires or tests based on a visual inspection of the
handwritten product have been developed [26]. Though,
their utilization on a day-to-day basis is still limited due to
the fact that the administration and coding are very time-
consuming. Furthermore, the perceptual abilities, experience,
and subjective judgment of an examiner are limited as well.

To overcome the limitations of the perceptual GD analysis,
researchers have been focusing on computerized quantitative
analysis of online handwriting. Pen and paper have been
replaced by digitizing tablets used to record a variety of
signals describing the evolution of the handwritten product
in time. It allowed quantification of kinematic (velocity,
acceleration or jerk) as well as dynamic (pen pressure, tilt or
azimuth) components of the handwritten signal. For instance,
Pagliarini et al. [27] (2017) presented the potential of quanti-
tative analysis to identify the development of handwriting dif-
ficulties (HD) at a very early age. Mekyska et al. [14] (2017)
built a classifier (random forests; 54 children) identifying
the presence of DD with 96% sensitivity and specificity.
Rosenblum and Dror [15] (2017) achieved 90% sensitivity
and specificity in DD diagnosis (support vector machines;
99 children) using various kinematic and dynamic features.
Asselborn et al. [16] (2018) reported 96% sensitivity and
99% specificity (random forests; 268 children) using 53
handwriting features quantifying different dimensions of
handwriting. Next, Mekyska et al. [17] (2019) proposed
a model (based on XGBoost, 76 children) and achieved
50% sensitivity and 90% specificity in identification of
GD presence using 7 basic graphomotor elements quantified
by conventional temporal, spatial, kinematic, and dynamic

parameters. In 2020, Galaz et al. [13] published a work
dealing with advanced analysis (utilising modulation spectra,
fractional order derivatives, and tunable-Q wavelet trans-
form) of graphomotor elements in 53 children attending
3rd and 4th grade of elementary schools. Employing ran-
dom forests they reached 83% sensitivity and 81% speci-
ficity. In the same year, Asselborn et al. [18] proposed new
data-driven based approaches for an assessment of handwrit-
ing difficulties, that were divided into 4 dimensions: kine-
matic, pressure, tilt and static. This novel approach enables
a detailed analysis in children having a very similar overall
score of dysgraphia, but differing in specific difficulties.
Finally, Garot et al. [19] (2020) enrolled 280 children who
were performing the Concise Evaluation Scale for Children’s
Handwriting (BHK) while recorded by digitising tablets.
Employing a cluster analysis, the authors were able to auto-
matically discriminate among 3 groups of children associated
with dysgraphia: 1) children with mild dysgraphia usually
not identified in schools, 2) children with severe dysgraphia
manifested in kinematics and pressure, and 3) children with
severe dysgraphia manifested mainly in tilt. The overview of
the mentioned current works and their achievemnts can be
found in Table 1.

Considering the success of utilizing the FD (Grünwald-
Letnikov approach) in Parkinson’s disease dysgraphia anal-
ysis in our previous works [9]–[12], and in the assessment of
GD in school-aged children [13], [28], this study, as a next
logical step, has the following aims:
• to extend our previous research by the employ-
ment of several FD-approaches instead of one
(Grünwald-Letnikov approach),

• to explore the differences of several FD approaches in
the assessment of GD in the children population,

• to compare the power of the FD-based handwriting fea-
tures computed by several FD approaches to estimate the
severity of GD.

II. DATASET & METHODOLOGY
A. DATASET
For this study, we enrolled 85 children (31 girls and 54 boys)
attending 3rd and 4th grade at several primary schools in the
Czech Republic. The demographic data of the participants
can be found in Table 2 and the resulting grade distribu-
tion in Table 3. Children were asked to perform drawings,

TABLE 1. Overview of current works.
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writings, and several cognitive tests based on a protocol
consisting of 31 tasks designed in cooperation with psy-
chologists and special educational counselors. Every grapho-
motor task of the protocol has been evaluated by a well-
experienced psychologist and rated on the scale from 0 to 4
where: 0 – no graphomotor difficulties; 1 –mild graphomo-
tor difficulties; 2 – graphomotor difficulties; 3 – dysgraphia;
4 – severe dysgraphia. Finally, an overall score has been
assigned to each child based on a complex analysis of
all the 31 tasks in the protocol (i.e. including the cogni-
tive tests). Although the protocol contains 7 graphomotor
tasks such as Archimedean spiral, loops, sawtooth, or rain-
bow, in this study, we focused on one graphomotor task
(combined loops), which has been proved to discriminate
well between children with/without graphomotor difficul-
ties [17].The distribution of scores (the overall and the sub-
score for the combined loops task) is presented in Fig. 1.
Correlation between the scores and the demographic data
is visualized in Fig. 2. Parents of all children participating
in this study signed an informed consent form approved by
the Ethical Committee of the Masaryk University. Through-
out the entire duration of this study, we strictly followed
the Ethical Principles of Psychologists and Code of Con-
duct released by the American Psychological Association
(https://www.apa.org/ethics/code/).

TABLE 2. Demographic data of the enrolled children.

TABLE 3. Grade distribution.

B. DATA ACQUISITION
At first, a template of the combined loop task was shown to
a child and then he/she was asked to replicate it on an A4
paper that was laid down and fixed to a digitizing tablet.
The drawing was acquired by the Wacom Intuos Pro L
(PHT-80) digitizer with the sampling frequency of 150Hz,
and the Wacom Inking pen, which provides a feeling of writ-
ing by a regular pen and offers immediate visual feedback.

FIGURE 1. Distribution of the overall score and the sub-score. Blue
dashed line represents imaginary threshold for the graphomotor
difficulties (right of the line).

FIGURE 2. Correlation matrix between the scores and demographic data
of the participants. A positive correlation is represented by red color and
a negative correlation by blue color.

Moreover, this set-up enabled us to record a variety of sig-
nals describing the drawing process: x and y position (x[n]
and y[n]); timestamp (t[n]); a binary variable (b[n]; 0 – in-
air movement, i. e. movement of the pen tip up to 1.5 cm
above the tablet’s surface, and 1 – on-surface movement, i. e.
movement of the pen tip on the paper), pressure exerted on
the tablet’s surface during drawing (p[n]); pen tilt (a[n]);
and azimuth (az[n]). For more information, see our previous
works [12], [14], [28]. An example of the selected combined
loop task performed by a child with/without GD can be seen
in Fig. 3.

C. FRACTIONAL ORDER DERIVATIVES
The essential of this study is the investigation of the sev-
eral (non-equivalent) FD approximations as a new advanced
approach of drawing/handwriting parameterisation. We
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FIGURE 3. Example of the combined loop task performed by a child without graphomotor difficulties (upper part)
and with graphomotor difficulties (bottom part). The thick parts of the red line represent the line-up places after
the interruptions of the writing.

developed this method to substitute the conventional differ-
ential derivatives in the feature extraction process (see our
previous works [9]–[12], [28]) in order to improve the quan-
titative analysis of the GD. In the scope of this study, we uti-
lized three FD approximations: Grünwald-Letnikov (GL),
Riemann–Liouville (RL), and Caputo (C), implemented by
Valério Duarte in Matlab [29]–[31].

1) GRÜNWALD-LETNIKOV
The FD definition by Grünwald-Letnikov is one of the first
and basic approaches [2]. A direct definition of the derivation
of the function y(t) by the order α –Dαy(t) [1] is based on the
finite differences of an equidistant grid in [0, τ ], assuming
that the function y(t) satisfies certain smoothness conditions
in every finite interval (0, t), t ≤ T , where T denotes the
period. Choosing the grid

0 = τ0 < τ1 < . . . < τn+1 = t = (n+ 1)h, (1)

with

τk+1 − τk = h, (2)

and using the notation of finite differences

1
hα
1αh y(t) =

1
hα

(
y(τn+1)−

n+1∑
v=1

cαv y(τn+1−v)

)
, (3)

where

cαv = (−1)v−1(αv ). (4)

The Grünwald–Letnikov definition from 1867 is defined
as

GLDαy(t) = lim
h→0

1
hα
1αh y(t), (5)

where GLDαy(t) denotes the Grünwald-Letnikov derivatives
of order α of the function y(t), and h represents the sampling
lattice.

2) RIEMANN–LIOUVILLE
Another classical form of the FD has been given by
Riemann-Liouville. The left-inverse interpretation of Dαy(t)
by Riemann-Liouville [1], [3] from 1869 is defined as

RLDαy(t) =
1

0(n− α)

(
d
dt

)n t∫
0

(t − τ )n−α−1y(t) dt, (6)

where RLDαy(t) denotes the Riemann–Liouville derivatives
of order α of the function y(t), 0 is the gamma function and
n− 1 < α ≤ n, n ∈ N, t > 0.

3) CAPUTO
Nowadays, the most significant contributions to the field of
FC are the results achieved by M. Caputo [32]. In contrast
to the previous ones, the improvement hereabouts lie in the
unnecessity to define the initial FD condition [1], [3]. The
Caputo’s definition from 1967 is

CDαy(t) =
1

0(n− α)

t∫
0

(t − τ )n−α−1yn(t) dt, (7)

where CDαy(t) denotes the Caputo derivatives of order α of
the function y(t), 0 is the gamma function and n− 1 < α ≤

n, n ∈ N, t > 0.

D. HANDWRITING FEATURES
Altogether, we extracted 3 sets of handwriting features, one
feature set per one employed FD approach. Basic kinematic

VOLUME 8, 2020 218237



J. Mucha et al.: Analysis of Various Fractional Order Derivatives Approaches in Assessment of Graphomotor Difficulties

FIGURE 4. Illustration of the in-signal outlier removal, where the original handwritten signal before removing the outlier samples is placed in the
upper part and after the outlier removal in the bottom part of the Figure. The velocity for α = 0.7 computed by Caputo’s approach from a sample of
healthy children is used. The magnitude of the removed samples (peaks) is up to 100-times higher in comparison with the normal ones.

features from the input handwritten signal were extracted as
well, namely velocity, acceleration, jerk and their horizontal
and vertical variants. Due to rare omissions of 3–4 samples
by the digitizing tablet during the acquisition, we performed
the in-signal outliers removal (outliers were considered as
elements more than three scaled median absolute deviations
from the median). If not pre-processed, the differentiation of
this gap would leave significant peaks in the output hand-
writing feature as illustrated in Figure 4. All handwriting
features were computed for α in the range of 0.1–1.0 (with
0.1 step), where α = 1.0 is equal to the full derivation.
Finally, the statistical properties of all extracted handwriting
features were described by the mean and the relative standard
deviation (relstd). To sum up, each feature set consists of 180
computed kinematic features.

E. STATISTICAL ANALYSIS
At first, we performed the normality test of the handwriting
features using the Shapiro-Wilk test [33]. In the case of
non-normally distributed features, we utilised the Box-Cox
transformation [34].

Next, to assess the strength of the relationship between
the feature values and the scores (the overall score and the
sub-score), Spearman’s and Pearson’s correlation coefficients
were computed (we considered the level of significance
0.05). The p-values were adjusted using the False Discov-
ery Rate (FDR) method to address the issue of multiple
comparisons.

During the statistical analysis, we controlled for the effect
of several confounding factors (covariates), namely age,
grade, and sex.

Finally, to evaluate the power of the handwriting fea-
tures to support the estimation of scores assessing the GD,
we performed a multivariate analysis. For this purpose,
we employed the state-of-the-art algorithm XGBoost [35]
(10-fold cross-validation with 20 repetitions). The XGBoost
algorithm was selected, because of its ability to achieve good
performance on a small data set. Moreover, it is able to
compete with the deep learning methods that are still not
being used in the case of the small dataset as they require
much larger data to be trained on [36]. Hyper-parameter space
optimization was performed by a random search strategy with
following parameter values:

• learning rate: [0.001, 0.01, 0.1, 0.2, 0.3];
• gamma: [0, 0.10, 0.15, 0.25, 0.5];
• maximum depth of a tree: [6, 8, 10, 12, 15];
• sub-sample ratio: [0.5, 0.6, 0.7, 0.8, 0.9, 1.0];
• sub-sample ratio of columns for level:
[0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0];

• sub-sample ratio of columns for tree:
[0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0];

• minimum child weight: [0.5, 1.0, 3.0, 5.0, 7.0, 10.0].

The model’s performance was evaluated by the mean
absolute error (MAE), the mean square error (MSE), the
root mean square error (RMSE), and the estimation error
rate (EER).
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FIGURE 5. Cross-correlation matrices of the most significant FD features as assessed by the Spearman’s correlation (see Table 4).Framed sub-areas in
each cross-correlation matrix visually isolates the handwriting features computed by the same FD approach.

FIGURE 6. Distribution of the FD order α for the features mostly
correlating with the overall score, see Table 4 (GL – Grünwald-Letnikov;
C – Caputo; RL – Riemann–Liouville).

III. RESULTS
The results of the correlation analysis can be seen in Table 4.
The table shows the top 5 features per FD approximation
according to p-values of the Spearman’s correlation related
to the overall score (upper part) and the sub-score (bottom
part). The strongest correlation (after the FDR adjustment)
with the overall score was identified in features extracted by
the Caputo’s FD. However, in the case of the sub-score, the
Riemann-Liouville’s FD arises as the most significant.

The correlation matrices (using the Spearman’s correla-
tion) are visualized in Fig. 5. Each matrix includes the top 5
features per FD approximation (i. e. 15 features in onematrix)
identified in Table 4. The distribution of the FD order α of
20 best features regarding the Spearman’s correlation per FD
approximation is visualised in Fig. 6 for the overall score and
in Fig. 7 for the sub-score.

Finally, the results of the multivariate analysis can be found
in Table 5. In the case of the overall score estimation, the
best results were achieved by the Riemann-Liouville FD.

FIGURE 7. Distribution of the FD order α for the features mostly
correlating with the sub-score, see Table 4 (GL – Grünwald-Letnikov;
C – Caputo; RL – Riemann–Liouville).

In the case of the sub-score estimation, the lowest error was
achieved when combining features of all the approximations.
Hyper-parameters of the best XGBoost models can be found
in Table 6.

IV. DISCUSSION
The main goal of this study is to explore the differences
across various FD approximations utilized in the analysis of
the GD. A comparison of an identical feature (i. e. velocity
for α = 0.2) extracted from the handwritten product asso-
ciated with the GD (the same sample as in the bottom part
of Fig. 3) is shown in Fig. 8. It illustrates the differences
across the involved FD approximations. The velocity function
extracted by the Caputo’s FD dominates by significant peaks
in the positions, where a child interrupts the performance for
a moment and then continues writing. These interruptions
are also visible in the function computed by the Riemann-
Liouville approach, though in the form of a constant line
followed by elevated oscillations instead of peaks. On the
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FIGURE 8. Comparison of the velocity function (α = 0.2) across all the FD approximations (a child associated with graphomotor difficulties; C – Caputo;
GL – Grünwald-Letnikov; RL – Riemann–Liouville).

TABLE 4. Results of the correlation analysis between the score values
and computed handwriting features ranked by the adjusted p-value of
Spearman’s correlation.

other hand, the function based on the Grünwald-Letnikov
approach seems to be a constant line, nevertheless after a scale
normalization (min-max normalization), see Fig. 9, it is clear
that the function has the oscillatory nature as well.

The differences across FD approaches are underlined by
the comparison in Fig. 10, where the dependency of the
relative standard deviation of the velocity on the FD order

α is visualized. Feature values computed by the Grünwald-
Letnikov approach are generally higher in comparison with
the Caputo and Riemann-Liouville ones, which are more
similar. On the other hand, the envelope of the velocity profile
based on the Grünwald-Letnikov approach is more similar to
the Riemann-Liouville one. Moreover, all functions meet at
the point where α = 0.9 and continue simultaneously to the
full derivation (α = 1.0), which is expected, because the full
derivation has to be the same for all approaches.

Experts in the field of psychology need to understand
and clearly interpret the results of the graphomotor analysis,
i. e. to link them with specific symptoms or physiological
processes. This is very challenging especially in the case
of advanced signal parameterisation, which is also our case.
Therefore, to bring credibility for a non-technical reader,
we provide an illustration in Fig. 11. In this figure, we com-
pare the vertical projection of the movement (y axis) and the
vertical velocity (Grünwald-Letnikov approach, α = 0.8) in
a child without graphomotor difficulties (same as in the upper
part of Fig. 3). The function extracted by FD for α = 0.8 is
difficult to be understood, but the relationship to the velocity
is obvious.

Regarding the results of the correlation analysis (associ-
ation with the overall score), the most significant features
(after the FDR adjustment) are extracted by the Caputo’s
FD, where the top 5 have the p-value < 0.05. Most sig-
nificant handwriting features are related to the variability
of the jerk, which refers to the disturbances in the fluent
handwriting performance of the child with GD. The values
of the correlation coefficients are negative, which means that
the handwriting performance of the subject is worse with
the lower variability of the jerk. This may be confusing,
because just the opposite effect may be expected. Never-
theless, this is specific for the combined loop task. A child
without GD is less focused on the writing (the movement
is more automatic), therefore the changes between loops
are more dynamic, which results in higher jerk variability.
Vice versa, a child with GD is more focused on his/her
performance, therefore, the handwriting is associated with
lower acceleration and jerk. In the case of Grünwald-Letnikov
based features, 4 out of the 5 most significant ones are jerk
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FIGURE 9. Comparison of the velocity function (α = 0.2, normalized scale) across all the FD approximations (a child associated with
graphomotor difficulties; C – Caputo; GL – Grünwald-Letnikov; RL – Riemann–Liouville).

FIGURE 10. Relative standard deviation of velocity depending on FD
order α (C – Caputo; GL – Grünwald-Letnikov; RL – Riemann–Liouville).

related too, what supports the results obtained by the Caputo’s
approach. In the view of the Riemann-Liouville FD, the most
significant features are mostly acceleration and jerk related,
this likewise supports the association with the smooth hand-
writing disabilities.

Considering the correlation with the sub-score, the most
significant features (after the FDR adjustment) are extracted
by the Riemann-Liouville FD, while 4 out of 5 features are
acceleration-based. This again refers to the disruptions in
continuous handwriting of a child with GD (i. e. less auto-
matic and dynamic movements). In the case of the Grünwald-
Letnikov approach, the variation of the velocity is observed
to be the most significant, however, none of the features
is significant after the p-value adjustment (similarly to the
Caputo’s approach). Due to the omission of the full deriva-
tions in best correlation results, the FD-based features outper-
form the conventional handwriting features in the scope of the
sub-score correlation analysis for the connected loops task.
In addition, this is in line with our previous results. [11], [12].

Regarding the cross-correlation of the top-ranked features
strongly associated with the overall score (see the left matrix
in Fig. 5), we did not observe any strong correlations among
the features based on the Caputo’s approach. In the case of
the Riemann-Liouville’s approximation, we identified a sig-
nificant correlation between the mean of the vertical accel-
eration and the relstd of the horizontal acceleration, in both
features α = 1, which means full derivation. Similarly,
in the Grünwald-Letnikov’s approach, we identified a strong
association between the relstd of the horizontal acceleration,
and the mean vertical jerk and the mean vertical acceleration.
The last two mentioned features are in fact very close to each
other, because the acceleration with α = 1 is very similar to

FIGURE 11. Comparison of the vertical projection of movement and the
vertical velocity (Grünwald-Letnikov, α = 0.8) in a child without
graphomotor difficulties.

the jerk with α = 0.2 We assume that the above-mentioned
association is linked with the fact that the vertical movement,
contrary to the horizontal one, requires coordinated move-
ment and finer flexions/extensions of more joints (interpha-
langeal and metacarpophalangeal) and therefore, it is more
complex than ulnar abductions of the wrist [37], [38]. Since
the vertical movement is complex, it is strongly affected by
psychological and muscular fatigue [39], which could be
manifested in lower vertical acceleration in children with
GD. Nevertheless, low relstd in the horizontal direction could
mean monotonous and less dynamic movement too.

In the case of the cross-correlation matrix linked with the
sub-score, we can observe significant correlations only in
features that express the same information, e. g. the mean
of the horizontal acceleration, but differ only in α, e. g. the
difference is 0.1. Since this difference is very low, it is
obvious that these features significantly correlate. Except for
this, the features do not correlate much among themselves
which means that they are not redundant, but still relevant
(see Table 4).

Based on the distribution of α in the 20 top-ranked features,
we can observe that those based on the Caputo’s approach
are mostly concentrated around 0.2 and 0.5 for the over-
all score and almost evenly distributed in the case of sub-
score correlation analysis. The Grünwald-Letnikov FD-based
features associated with the overall score have α concen-
trated around 0.2 and 0.9. Those associated with the sub-
score are mainly around 0.2, 0.5 and 0.7. Finally, in the
case of the Riemann-Liouville’s approach, we can observe
a higher concentration in the range [0.4; 0.6] for the overall
score, and in the range [0.7; 0.9] for the sub-score. Since the
distribution of the α varies per FD approximation and rat-
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TABLE 5. Results of the multivariate analysis.

TABLE 6. Hyper-parameters of the best XGBoost models.

ing scale, we hypothesise that further and finer optimization
of this parameter would bring even better quantification of
the GD.

Concerning the multivariate analysis (Table 5), where we
estimated the overall score, the best results were achieved
by the Riemann-Liouville FD-based features. The resulting
MAE was 0.65, and RMSE = 0.79. When estimating the
sub-score, all approaches had a very similar MAE, neverthe-
less, the lowest RMSE (0.79) was reached by the Riemann-
Liouville’s approach too. A combination of all the approaches
slightly decreased the error. These results suggest that the
Riemann-Liouville’s approximation in the field of quanti-
tative GD analysis outperforms the other ones. In addition,
using this approach we were able to estimate the scores with
MAE = 0.65 and MAE = 0.66, respectively. If we take
into account that the range of the first scale is 4, and of the
second one 3, the error can be considered as very low. In fact,
when assessing GD in children, psychologists tend to make
the error even higher, e. g. two experts can frequently differ
by 1 point (compare it to 0.65 or 0.66).

V. CONCLUSION
To the best of our knowledge, this is a unique study that
performs an investigation of the various FD approaches in the
computerized assessment of the GD in school-aged children.
Therefore, it should be considered as being rather exploratory
and pilot in nature. We can conclude that the employment of
various FD approximations brings major differences in kine-
matic handwriting features. In the scope of the correlation
analysis associated with the overall score, the Caputo’s FD

approach exceeds the rest of the analysed FD approxima-
tions. However, in the scope of the sub-score, the Riemann-
Liouville gained the most significant features. Moreover, the
results of the multivariate analysis suggest that the Riemann-
Liouville’s approximation in the field of the quantitative GD
analysis outperforms the other ones (MAE= 0.65 for overall
score and MAE = 0.66 for sub-score).
This study has several limitations and possible parts, that

could be further improved. First of all, the dataset is relatively
small in terms of the statistical validity of the results. To gen-
eralize the results, the larger dataset have to be acquired and
more handwriting tasks should be included in the analysis.
Next, a more granular FD α order search (step of 0.01 or
even less) in order to find the optimal α range should be
performed. Moreover, other feature types, such as temporal,
spatial, and dynamic, should be included in future compar-
isons. The future study should be detailly focused on the com-
parison of the FD-based features with the conventionally used
handwriting features. The different handwriting tasks have to
be investigated separately for the best performing FD-based
features. Besides, when comparing the several feature sets
performance (regression, etc.) an ANOVA test should be per-
formed in the future to analyze the differences between them.
Finally, various machine learning models should be trained
and compared in the future studies to get more information
about the classification performance of the proposed features
and to obtain the most robust models for GD identification.
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