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Abstract
Alzheimer’s disease is characterized by a progressive and irreversible cognitive deterioration. In a previous stage, the so-

called Mild Cognitive Impairment or cognitive loss appears. Nevertheless, this previous stage does not seem sufficiently

severe to interfere in independent abilities of daily life, so it is usually diagnosed inappropriately. Thus, its detection is a

crucial challenge to be addressed by medical specialists. This paper presents a novel proposal for such early diagnosis

based on automatic analysis of speech and disfluencies, and Deep Learning methodologies. The proposed tools could be

useful for supporting Mild Cognitive Impairment diagnosis. The Deep Learning approach includes Convolutional Neural

Networks and nonlinear multifeature modeling. Additionally, an automatic hybrid methodology is used in order to select

the most relevant features by means of nonparametric Mann–Whitney U test and Support Vector Machine Attribute

evaluation.

Keywords Mild Cognitive Impairment � Automatic Speech Analysis � Deep Learning � Convolutional Neural Networks �
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1 Introduction

Alzheimer’s disease (AD) is characterized by a progressive

and irreversible cognitive deterioration, which includes

memory loss and impairments in emotion, language, and

judgment, along with other cognitive deficits and symp-

toms in behavior. Its prevalence keeps increasing mainly

among the elderly, and as highlighted by the last World

Alzheimer Reports, AD is becoming epidemic as 900

million people can be regarded as the world’s elderly

population, living most of them in developed countries [1].

Therefore, an early and accurate diagnosis of AD helps

patients and relatives to plan the future and offers the best

possibilities that symptoms could be treated.
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In an early stage, a previous cognitive loss or Mild

Cognitive Impairment (MCI) appears. Nevertheless, it does

not seem sufficiently severe to interfere in abilities of daily

life; thus, it usually does not receive an appropriate diag-

nosis, and afterward, some patients develop AD. The

detection of MCI is a challenge to be addressed by medical

specialists and could help future AD patients [2]. Along

with memory loss, one of the main problems of AD is the

loss of social and language skills. This loss can be noted in

difficulties speaking to and understanding people, which

make even more complicated social interactions and the

natural communication process. Other crucial abilities for

communication are impaired as well, such as emotion and

expression. This difficulty communicating appears in early

stages of the disease due to language issues, and it leads

people with AD to social exclusion, with a serious negative

impact not only on the patients, but also on their families

[3]. During communication, language resources that

include pauses or disfluencies are used to maintain verbal

fluency. In AD/MCI, verbal fluency clearly changes:

Speech fluency is progressively substituted by more pauses

and disfluencies. Therefore, disfluencies are interesting

language elements that could be useful to properly diag-

nose MCI. Both disfluencies and speech silences have

valuable information for understanding the meaning of the

uttered message.

One of the main aims of this project is to develop an

automatic analysis of standard assessment tests, such as

Categorical Verbal Fluency (CVF), by using speech ther-

apy techniques which will allow to obtain quickly and

reliably these specific analyses [4]. In the last years, several

papers in the state of the art have addressed this issue. In

the present work, we focus on the integration of more

robust language-independent methodologies in order to

detect AD in speech, using one of the classical tasks of

CVF, the so-called animals naming task. Machine Learning

and Deep Learning Paradigms will be used for modeling,

as well as several feature sets based on linear and nonlinear

approaches in order to develop a real-time and robust

system.

Section 2 describes the materials. Section 3 presents the

used methods. Section 4 includes the results and discus-

sion, and finally in Sect. 5, conclusions are drawn.

2 Materials

Recent studies highlight the relevance of non-speech ele-

ments such as disfluencies in verbal communication to

identify MCI and AD. In [5, 6], it is suggested that more

pauses and shorter recording times reflect that AD patients

require a greater effort to produce speech than healthy

people: AD patients speak with longer pauses, more

slowly, with shorter speech segments, and they spend more

time trying to find the correct word, leading to speech

disfluencies or broken messages. Speech disfluencies are

any irregularity, break, or non-language element that

occurs during the period of fluent speech, and they can

start, complement, or interrupt it. These include elements

such as: false starts, restarted or repeated phrases, extended

or repeated syllables, thinking out loud, grunts or non-

lexical utterances such as repaired utterances and fillers,

and speakers correcting mispronunciations or their own

slips of the tongue [7]. If these disfluencies increase, it

could be a clear sign of cognitive impairment. In AD

patients, sometimes the verbal utterance reflects their

internal cognitive process or inner dialogue when they

think out loud: ‘‘What is that?’’, ‘‘How was this…’’, ‘‘/uhm/

I cańt remember,’’ ‘‘What was the name?’’. If the number

of silences and disfluencies increases, it may indicate that

there is a worsening of the disease, which could lead to a

deficit in effective and clear communication.

As a consequence, disfluencies play an important role in

verbal communication and they are a direct reflection of

the cognitive process that takes part in communication and

convey an unquestionable characteristic for the diagnosis

of these disorders, when fluent speech starts to disappear or

is replaced by some disfluencies, Fig. 1. Although AD is

mainly a cognitive disease, it may have articulation and

phonation biomechanical alterations.

The Categorical Verbal Fluency task (CVF), animal

naming (AN), or animal fluency task, is a test used in

neurodegenerative diseases, which measures and quantifies

the progression of cognitive impairment [8]. It is com-

monly used to assess language skills, executive functions,

and semantic memory [9]. The used sample includes 187

healthy individuals and 38 MCI patients that belong to the

cohort of Gipuzkoa-Alzheimer Project (PGA) of the CITA-

Alzheimer Foundation [4, 10], Table (1). For the experi-

ments, a balanced subset PGA-OREKA has been selected.

3 Methods

Recent state-of-the art approaches include modeling by

means of linear and nonlinear speech features [14, 15]. The

proposed approach is based on the integration of several

types of optimum features to model speech and disfluen-

cies, using both linear and nonlinear ones. Furthermore,

this proposal is based on the description of speech

pathologies [5, 12] with regard to articulation, phonation,

quality of the speech, human perception, and the complex

dynamics of the system. In this paper, some of the most

used speech features (linear and nonlinear) will be taken

into account for differentiation between pathological and

healthy and speech [4, 5, 12–16], and discrimination
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Fig. 1 Details of several utterances with disfluencies in the Animals
Naming, Categorical Verbal Fluency (CVF) task, for an individual of

the MCI group, a signal (top image), b spectrogram and formants

(bottom image), by BioMetroLing software: first formant displayed in

black, second formant displayed in blue [11]
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through human perception. Most of them are well known in

the field of pathological speech characterization, and

therefore for each parameter, a reference is given where

further information and a deeper description can be found.

All features are calculated by means of software developed

within our research group [4, 5], SPSS [17], MATLAB [18],

Praat [19], and WEKA [20].

3.1 Automatic segmentation of disfluencies

The speech recording has been automatically segmented in

disfluencies and speech signal by a VAD (voice activity

detection) algorithm [6].

3.2 Extraction of features

After the segmentation, the following features will be

extracted:

• Classical features (CF)

1. Spectral domain features: jitter, pitch, shimmer,

noise to harmonic ratio (NHR), harmonic to noise

ratio (HNR), harmonicity, spectrum centroid, APQ

(Amplitude Perturbation Quotient), and formants

and its variants (min, max, mean, median, mode,

std) [4, 5].

2. Time-domain features: breaks, voiced/unvoiced

segments, ZCR (Zero-Crossing Rate) [4, 5], and

its variants (min, max, mean, median, mode, std).

3. Energy, short time energy, intensity, and spectrum

centroid. These features are sometimes extended by

their first- and second-order regression coefficients

(D and DD, respectively) [8, 12–15].

• Perceptual features (PF)

1. Mel Frequency Cepstrum Coefficients (MFCC):

These coefficients try to approach human percep-

tion. Human ears behave as some filters, and they

only concentrate on some frequency components

with different levels. These filters are not equis-

paced on the frequency axis: At low frequencies,

there are more filters, and at high frequencies, there

are fewer filters with different bandwidths. This

type of performance is simulated by Mel Frequency

analysis, and particularly Mel Frequency Cepstrum

Coefficients (MFCC). Its variants are also calcu-

lated (min, max, mean, median, mode, std).

2. These features are sometimes extended by their

first- and second-order regression coefficients (D
and DD, respectively) [4, 5, 12, 14].

• Advanced features (AF)

1. Coefficients that provide detailed information are

linked to voice quality, perception, adaptation, and

amplitude modulation: PLP (Perceptual Linear

Predictive coefficients), MSC (Modulation Spectra

Coefficients), ICC (Inferior Colliculus Coeffi-

cients), ACW (Adaptive Component Weighted

coefficients), LPCT (Linear Predictive Cosine

Transform coefficients), LPCC (Linear Predictive

Cepstral Coefficients), and their variants are also

calculated (min, max, mean, median, mode, std).

These features are sometimes extended by their

first- and second-order regression coefficients (D
and DD, respectively) [12, 14–16].

• Nonlinear features (NLF)

1. Fractal features: Fractal dimension and its variants

are also calculated (min, max, mean, median,

mode, std) [4, 5, 14–16].

2. Entropy features: Shannon entropy, multiscale

permutation entropy, and their variants are also

calculated (min, max, mean, median, mode, std)

[4, 5, 14–16].

3.3 Automatic selection of features
by Kolmogorov–Smirnov and Mann–Whitney
U test

In this step, the best features are automatically selected

taking into account medical criteria with regard to common

significance level.

1. In a first step, the normality of the distributions is

analyzed by means of the nonparametric Kolmogorov–

Smirnov test [17].

2. The automatic feature selection is performed by means

of Mann–Whitney U test because the distributions are

Table 1 Demographic data of the subsets selected for the experiments: PGA-OREKA, AN task subset (CR/MCI: Control Group/MCI Group)

Female Male Range of age Age-mean Age-SD

AN (CR/MCI) 36/21 26/17 39–74/42–79 56.73/57.15 7.8/8.9
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not normal distributions, being p value\ 0.1 in order

to obtain a larger set for the second phase of feature

selection [18].

3.4 Automatic feature selection by WEKA

Afterward, a new selection phase is carried out in WEKA

[20]:

1. In a first step, the feature selection algorithm SVMAt-

tributeEval is used. This provides a selection by

analyzing the integration of features in the group.

2. Then, for the experimentation, several feature sets with

different feature numbers are created in order to

develop a real-time system.

3.5 Normalization of features by WEKA

Moreover, during data preprocessing, all the features will

be normalized by means of WEKA algorithms.

3.6 Automatic classification

In order to model the system, four classifiers will be used:

1. Support Vector Machines (SVM).

Fig. 2 Details of several results of the Mann–Whitney U test for the

disfluencies and the unvoiced segments, in the Animal Naming,
Categorical Verbal Fluency (CVF) task, for the MCI group and the

CR group: (top-left) mean of unvoiced segments, (top-right) longest

unvoiced segments, (bottom-left) Jitter ddp for disfluencies, (bottom-

right) standard deviation for permutation entropy
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2. k-nearest neighbors (k-NN)

3. Multilayer Perceptron (MLP) with L layers of N neu-

rons, Number of Neurons in Hidden Layers (NNHL).

4. Convolutional Neural Network (CNN) with L layers of

N neurons, a convolution mask of cxc, and a pool mask

of pxp. We have used the WEKA software suite [16] in

order to perform the experimentation.

3.7 System evaluation

For the evaluation of the system, three criteria will be used:

1. Classification Error Rate (CER in %) has been used in

order to evaluate the results. We have used k-fold

cross-validation with k = 10 for both training and

validation [20, 21].

2. False Positive Rate has been used in order to avoid

false diagnosis in the CR group where healthy people

could undergo medical treatment unnecessarily, which

would lead to misuse of medication.

3. Time Model: Time to build the model, oriented to real-

time systems.

4 Results and discussion

4.1 Creation of feature sets

In the experiments, the used materials are about 60 speech

samples for the control group (CR), and 40 speech samples

for the MCI group, both belonging to the aforementioned

PGA-OREKA (Table 1).

1. The signal is segmented into speech and disfluencies

by a VAD algorithm with a minimum signal level.

2. Initially, the number of features obtained by the

methodology described in Sect. 3 is about 920 (473

for speech and 447 for disfluencies) for a 22,000 kHz

sampling frequency. The proposed set of features

includes features from all the kinds of features

described in Sect. 3.2 for speech and disfluencies.

3. Afterward, after a normalization test, an automatic

feature selection is carried out using a nonparametric

Mann–Whitney U test with p value \ 0.1, and about

150 features are selected (Fig. 2).

4. In the second step of optimization, the attribute

selection algorithm SVMAttributeEval of WEKA pro-

vides about 80 features.

5. Finally, several feature sets are created with the best 5,

10, 25, and 50 features, named P5, P10, P25, and P50,

respectively.

4.2 Classifiers configuration

Several classifiers have been created using the criteria in

Sect. 3.5. Table 2 shows the used configurations.

4.3 Experimentation

The models described in Table 2 have been evaluated by

means of the 3.7 criteria. The results are stable, hopeful,

good, and equilibrated for all of them.

1. Figure 3 shows the global CER results of the automatic

classification for both the control group (CR) and the

MCI group. CER (%) is evaluated for all the classifiers

in Table 2. The new approach that integrates disflu-

ency analysis outperforms previous works [4] for most

of the classifiers. With the developed methodology, the

results are in general very satisfactory for this simple

task.

2. The best results are achieved with the 25 feature set,

P25, and according to the rates, SVM can be consid-

ered the optimal solution. MLP2 and CNN for

configurations 1, 2, and 4 obtain hopeful results with

less computational load than classical MLP. In those

cases, an average of 95 and 92% is achieved. As it can

be seen in the selected parameters, this is due to the

evaluation of features related to disfluencies and

because the models are tested with important data that

were not taken into consideration in the previous

experiments; for example, the conversations of patients

with themselves.

3. As it can be seen in Fig. 3, the results obtained in the

task (AN) for MCI are very good, especially taking

Table 2 Configuration of the proposed classifiers: kernel type;

Number of Neurons in Hidden Layers (NNHL), /a/=(number of fea-

tures?classes number)/2, /a, a/=2 layers with a NNHL; convolution

mask (cxc); pooling mask (pxp); ID (Initial Dropout); HD (Hidden

Dropout)

Model Kernel NL-NNHL cxc pxp ID HD

k-NN

SVM Polynomial

MLP1 /a/

MLP2 /a,a/

CNN1 /a/ 0.2 0.5

CNN2 /a/ 0.2 0.2

CNN3 /a,a/ 0.2 0.5

CNN4 /a,a/ 0.2 0.2

CNN5 /a/ 2 9 2 2 9 2 0.2 0.5

CNN6 /a/ 2 9 2 2 9 2 0.2 0.2
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into account that they are modeled by 25

characteristics.

4. There is a clear improvement with regard to previous

works due mainly to the improvement of the automatic

feature selection and the integration of disfluency

information.

5. Additionally, note that the specific weight of Thick

Data could be important in this case by introducing the

most noteworthy features into the algorithm, thus

enriching information. This hybrid strategy of using

both Thick Data and CNN could be a hopeful option

for future real systems, even with small data sets.

6. The average between %CER and the time needed to

build the models is shown in Fig. 4. SVM achieves

good results in all tasks, especially in the significant

5% of CER. The fact that the data are well character-

ized is very helpful, and with CNN convolutional

networks, an 8% CER is achieved. The Time Models

are also optimum for these solutions.

7. Figure 5 shows the False Positive Rates for both

groups, CR and MCI. These criteria are crucial in real

health systems as medical criteria. In this case, SVM,

MLP2, CNN1, and CNN2 appear as the best options.

8. Finally, the Objective Function (OF) with different

weights for the system parameters is shown in Eq. 1 by

medical criteria.

OF ¼ w1 � CER � w2 � TM � w3 � FP ð1Þ

Fig. 3 CER (%) for different

feature sets and selected

classifiers (Table 2): k-nearest

neighbors (k-NN), Support

Vector Machines (SVM),

Multilayer Perceptron (MLP),

and Convolutional Neural

Network (CNN)

Fig. 4 %CER (a) vs. time to build the model (b) for classifiers in Table 2
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5 Conclusions

This paper presents a novel approach for the development of

a real-time support system for the diagnosis of MCI. The

system is based on automatic analysis of speech and disflu-

encies and Deep Learning modeling. Following the trend of

Thick Data, the multifeature modeling is based on both

automatic selection of the most relevant features by medical

criteria and automatic selection of attributes over speech and

disfluencies: Mann–Whitney U test, Support Vector

Machine Attribute (SVM) evaluation, and Deep Learning

approaches. The best approaches include deep learning by

means of Convolutional Neural Networks (CNN) and SVM.

The results are hopeful and lead to a new research line for the

development of real-time health systems.
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