

Electrical & Automation Engineering

INTELLIGENT ROBOT

Memory

ANDRÉS GARCÍA SEVILLA

THESIS ADVISOR: MARCOS FAUNDEZ

SPRING 2022

To my parents, brother, and friends thanks to whom I became the person I’m today.

Abstract

The aim of this Final Thesis Project is to shed some light on the utility of implementing user-

friendly robot assistants in the everyday world, accessible to the population, in terms of cost

and simplicity of use.

This study examines and explores the capabilities of building a helping robot with easily

accessible hardware and applying complex software concepts, such as computer vision and

machine learning while maintaining a low development budget during production.

With the goal in mind of developing an assistant robot skilled to follow several paths, such as

drawn lines or a person, we created an object-recognition system connected to some motors that

allows the robot to perform its function accordingly. The programmed code devised

encompasses a library which enables the robot to recognize a wide range of different objects,

used as specific input, which will trigger the motors so that the robot carries out alternative

movements in line with the entries. Such movements are also coded, with Python programming

language.

The project also attempts to find the perfect union between these complex software and

electronic hardware, as well as with the creation of a resilient aluminum robot's chassis, capable

of withstanding the carriage of considerable weight on it, thus helping the user to carry items

along the way.

This design might be profitable today, especially as machine learning software development is

flourishing nowadays.

I

Index

Index……I

Figure index………………………………………………………………………………………………………II

Table index……………………………………………………………………………………………………...IV

Glossary of terms………………………………………………………………………………………………...V

1. Objective ...1

1.1 Purpose ...1

1.2 Object and Scope ...1

2. Background and need for information ...3

2.1 Background ..3

2.2 Necessary Information ...3

2.2.1 Practical function of the design ..4

2.2.2 Appearance role in the design's function ..4

2.2.3 Materials suitable for the design...5

2.2.4 Appropriate construction methods for the design ...5

2.2.5 Key Technik Factors ..5

2.2.6 Development Structure & Methodology .. 10

3. Prototyping .. 12

3.1 Chassis ... 12

3.2 Wheels .. 14

3.3 Motors .. 18

3.4 Software Object Recognition ... 19

3.5 Implementation of Software-Hardware Actuators ... 30

3.5.1 L298N Motor Driver Module ... 30

3.5.2 DC Motor ... 33

3.5.3 Robot Kinematics into Software .. 37

3.5.4 Camera Software Development for Object Following ... 45

3.5.5 PWM Control ... 48

3.6 Shape detection and Lane following .. 52

3.7 Used line routine if CPU is not Optimal .. 59

4. Results of prototyping and Conclusions .. 68

5. References ... 77

II

Figure index

Figure 2.1 Flowchart of the robot's utilities ...7
Figure 2.2 Raspberry Pi 4 ..7
Figure 2.3 Raspbian ...8
Figure 2.4 Logi 720 CAM ..9
Figure 2.5 Motor-RPI4 Connection ..9
Figure 2.6 Project Milestones .. 11
Figure 3.1 Aluminum Bars dismounted ... 12
Figure 3.2 Aluminum Bars measures ... 13
Figure 3.3 Connectors measures .. 14
Figure 3.4 Basic Prototype Chassis .. 14
Figure 3.5 Wheel prototype.. 15
Figure 3.6 Four wheels motion .. 15
Figure 3.7 Outer surface Mecanum Wheel .. 16
Figure 3.8 Mecanum Wheel Roller .. 16
Figure 3.9 Solid Works Full 3D Wheel .. 17
Figure 3.10 Printed Wheels (3D) ... 17
Figure 3.11 Movement formulas .. 18
Figure 3.12 Viewable code output ... 19
Figure 3.13 Error Example nº1 .. 20
Figure 3.14 Object Detection Folder .. 20
Figure 3.15 Set of coordinates for object "Person" .. 21
Figure 3.16 First unsuccessful prototyping code.. 22
Figure 3.17 Modules imported in the code .. 23
Figure 3.18 OD() function for robot's following routine .. 24
Figure 3.19 Addition of terminal arguments .. 24
Figure 3.20 Loading the tensorflow model .. 25
Figure 3.21 Cleaning of errors in the model list ... 25
Figure 3.22 Setup of video ... 26
Figure 3.23 Processing of information given by the module ... 26
Figure 3.24 Tolerance adjustment of the camera in relation to the object ... 27
Figure 3.25 Detection and drawing around the side object (eg. bottle) .. 27
Figure 3.26 Correction of movement with kinematic functions ... 28
Figure 3.27 Object recognized moved to the right ... 28
Figure 3.28 Object recognized moved to the left ... 29
Figure 3.29 Forward recognition .. 29
Figure 3.30 Stop recognition .. 30
Figure 3.31 Inside scheme H-bridge motor controller ... 31
Figure 3.32 H-bridge scheme ... 31
Figure 3.33 H-bridge working current flow ... 32
Figure 3.34 DC motor .. 33
Figure 3.35 DC motor explosive view ... 34
Figure 3.36 Inner principle working of a DC motor .. 34
Figure 3.37 Simple working model of L298N ... 35
Figure 3.38 Raspberry Pi4 PIN distribution ... 36
Figure 3.39 Example of connection applied to the prototype... 37
Figure 3.40 Kinematics with respective command number ... 37
Figure 3.41 Connection wanted between motor drivers and Raspberry Pi .. 44
Figure 3.42 Camera frame quadrants ... 45
Figure 3.43 Wanted centering of object ... 46
Figure 3.44 Tolerance idea for camera ... 47
Figure 3.45 calculations for the application of tolerance rectangles .. 47
Figure 3.46 Deviation consideration proposal ... 48
Figure 3.47 PWM diferent duty cycles .. 49
Figure 3.48 Current peaks .. 52
Figure 3.49 Examples of grey-scaling binary matches .. 53
Figure 3.50 Summatory of pixels ... 54

file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149943
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149944
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149947
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149964
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149967
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149968
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149969
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149970
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149971
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149972
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149973
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149974
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149975
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149979
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149980
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149981
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149982
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149983
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149985
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149986
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149987
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149989
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149990
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149991
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149992
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149994
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106149995

III

Figure 3.51 Threshold programming ... 54
Figure 3.52 Lane with applied threshold .. 55
Figure 3.53 Lane with applied canny edge .. 55
Figure 3.54 Bird-eye perspective in modern cars ... 56
Figure 3.55 Image warping function .. 56
Figure 3.56 Trackbar functions used to detect the current contour points ... 57
Figure 3.57 Warping depiction .. 57
Figure 3.58 Warping applied to lane .. 58
Figure 3.59 Motor logic with camera control in lane ... 58
Figure 3.60 Addition of arrays of bits .. 58
Figure 3.61 IR working on body .. 59
Figure 3.62 IR working on color .. 60
Figure 3.63 Programming sequence .. 60
Figure 3.64 Robot in forward position ... 61
Figure 3.65 Robot with respective routines of turning ... 61
Figure 3.66 Detection of keyboard with movement ... 64
Figure 3.67 Movement return .. 64
Figure 3.68 Stop signal used .. 65
Figure 3.69 First Encounter with STOP signal .. 65
Figure 3.70 5 seconds after obtaining the STOP signal ... 66
Figure 3.71 Identification of the mouse ... 67
Figure 4.1 Final look of connections .. 70
Figure 4.2 Start of the circuit ... 71
Figure 4.3 Detection of object assigned to horizontal movement to the right .. 71
Figure 4.4 Loading of package once positioned ... 72
Figure 4.5 Curve assimilation and correction to the right .. 72
Figure 4.6 Stop sign interpreted and motors stopped ... 73
Figure 4.7 Right turn activated by IR sensors .. 73
Figure 4.8 Horizontal left movement activated by interpretation of object ... 74
Figure 4.9 End of line .. 74

file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106150010
file:///C:/Users/andre/Downloads/memory_TFG_andresito%20(1)%20(1)%20(2).docx%23_Toc106150019

IV

Index of Tables

Table 1 Informative Basic Budget ... 13
Table 2 Programmed list of functions regarding the movement .. 45
Table 3 Motors duty cycle to Voltage relation ... 51

V

Glossary of terms

API AdaFruit Pi

CAD Computer Aided Design

COCO Common Objects in Context

CPU Central Processing Unit

DC Direct Current

GND Ground

GPIO General Purpose Input Output

HD High Definition

L298N Type of motor module driver

MDF Medium Density Fiberboard

ML Machine Learning

OD Object Detection

Open CV Object recognition software

OS Operating System

PCB Printed Circuit Board

PWM Pulse Width Modulation

RPI Raspberry Pi

SBC Single Board Computer

USB Universal Serial Bus

Vcc Common Collector Voltage

VI

1

1. Objective

1.1 Purpose

The primary motivation behind the project is based on the initiative to facilitate the use of

robotic assistants in businesses and private homes without the need for prior knowledge in

programming or complex robotics operations.

The desired purpose would be composed of a combination of simplicity and elegance in a way

that delivers the final product and tries to adhere to the initial idea explained in the following

point.

1.2 Object and Scope

This project aims to attain a fusion between theoretical knowledge and empirical elaboration in

the technical field. In this way, it is expected to obtain modern knowledge of Electronic

Engineering combined with the teaching of state-of-the-art software.

The central focus of attention of the current Final Thesis Project, through the union between

software and electronic hardware, and together with the knowledge learned during teaching, is

intended to develop a robotic model capable of facilitating the life of the person who is in

possession of it.

To this end, the project turns to the commercial field of small and medium-sized companies,

aiming to implement a series of robots that can precisely perform the required work without

needing any additional programming. That is thanks to an easy-to-follow guide provided to the

user that contains a series of instructing signals, which the user himself can direct to the robots.

Another desired key application is the capability of the robot to follow a person and

communicate while carrying considerable weight on its back, which would be perfectly suitable

for the elderly when shopping.

2

The documentation concerning the development of the work will follow the guidelines and

regulations dictated by the Pompeu Fabra University of Barcelona and Tecnocampus ESUPT

for the Final Degree Projects.

The estimated time of dedication for the correct completion of the project consists of around

500/ 600 hours. The margin shown represents the possible improvement of the final product in

case of premature completion.

The extensive programming knowledge required for the project implementation will be

acquired from libraries and web pages, as indicated in the bibliography.

Once all the assembly processes are completed, the robot shall be able to identify symbols

through one of the cameras and send signals to the actuators to perform their corresponding

tasks.

3

2. Background and need for information

2.1 Background

This project starts from work already done in Python with image processing, such as the line

follower robot in Open CV. But it broadens it so that it is handy for the user through the changes

highlighted in the previous section.

The main problem facing today's society lies in the speed at which all software systems advance

on par with their hardware counterpart. That causes the need for constant learning by

technicians responsible for complex instruments.

However, the day-to-day citizen does not have certain bases to keep up with improvements in

technology. For this reason, the involvement of the engineer in simplifying consumer products

for everyday use is of the utmost importance.

In the field of civil aid robotics, nowadays this simplification is not quite well implemented

since it usually requires personal manufacture for each client or the constant supervision of

technical teams responsible for the robots' well-functioning. A clear example of that is in the

mega warehouses where Amazon must manage the inventory of products. This case is the

ultimate foundation to optimize the time and expenses of the company. However, not everyone

has access to the number of logistics and means involved in applying this modern solution.

The project is based on this last point and aims to improve public access to the use of the utility

robot.

2.2 Necessary Information

This section reveals the most important features to consider when developing the proposed

project.

4

2.2.1 Practical function of the design

The robot will be able to move within its environment thanks to the usage of 4 wheels attached

to the vehicle chassis. It is mainly designed for flat terrains, without much roughness, to achieve

peak performance at the early stages of the prototype.

The early project prototype will interact with its surroundings objects by having a surface

capable of carrying a load on its back.

It will be powered by an internal battery attached to the chassis. The optimal battery will power

12V in parallel to the motor controllers and another battery to power the RPI with 5.1V and a

serial USB connection.

The brain of the robot will be stored in the Raspberry Pi, a British made single-board computer,

which is excellent for robotics development due to its cost-effective price and effective build.

The robot will be able to detect itself in the world, thanks to implementing the world coordinates

into the SBC. This will be enabled through the usage of cameras to perceive the environment,

remaining the main point of software programming. The goal would be achieving the robot to

be aware of its surroundings in all sorts of situations by using image processing and machine

learning.

2.2.2 Appearance role in the design's function

The robot's appearance will not be the focal point of the project, even though it will be

preferable to achieve an aesthetic and completed look.

For it, the preferable constituent materials would be aluminum -for the prototype chassis- and

the wheels, a 3D printed design. The screws and gears will be conventional metal. All the

materials will need to be prepared to undergo the thermal properties of their surroundings and

the internal circuitry.

It is of utmost importance to manage to get a stable and rigid design. For that instance, the robot

body will be mostly quadricorn, resembling a day-to-day car.

5

2.2.3 Materials suitable for the design

The properties of the material will determine its suitability for a design. For the current project

with robotics, aluminum is the preferred choice for building the chassis and basic iron metal is

used for the mechanical connections shown in the prototyping section.

In the electronics department materials such as tin for the soldering of some parts is a necessity

apart from the classic PCB boards and cables included.

On the other hand, the wheels are an important factor in the prototyping phase and a 3D flexible

printing material is used for the rotatory parts while a more robust printing material forms the

outer part of the object.

2.2.4 Appropriate construction methods for the design

The most appropriate methods to build the desired result are the cutting and shaping with the

assembly of parts using the needed screws, glues, solder etc. The molding and the casting for

the 3D is also very important moving forward.

A particular material can only be worked in a limited number of ways. The method of

construction will therefore be determined by the chosen material, the availability of

manufacturing facilities and the production costs.

2.2.5 Key Technik Factors

The programming of the robot’s SBC will be made in the Python programming language due to

its extended reach into the desired results of the project.

2.2.5.1 Open CV

Open CV is a free to use python library that implements a range of functions directed to improve

the communication between video inputs and image procession methods using Artificial

intelligence and machine learning. For this project this library will be crucial to make a cross-

6

bridge between the real world and the brain of the robot. This will be explained further in the

prototyping section.

2.2.5.2 Programming Structure

The initial problem is quite simple to display; it is wanted that the robot follows a determined

path or object, and when it encounters signals, it must be able to recognize them and act

accordingly to the user’s guide.

The initial idea of the programming was to use signals with numbers inside the object to

interpret it by the robot and thus making it do actions depending on the signal. After some

testing this was found to be very basic, and the final program takes it to another level. The

program not only is able to recognize objects/signals and assign them to actions, but it is made

in a way that is incredibly easy for the developer to change such assignments to objects in a

manner that complements the user wishes.

With this code embedded into the robot, it can interpret each signal in the programming phase

by implementing machine learning techniques and ensuring that the robot knows how to

differentiate between the different applications

The final available routines of the robot will be the possibility of entering following mode in

which the robot follows the desired object or entering line following routine mode in which will

follow a determined path and act accordingly to the signals.

7

Figure 2.2 Raspberry Pi 4

Figure 2.1 represents a prototype of the very first utilities of the robot.

2.2.5.3 SBC

To make the program-robot connection, a Raspberry Pi 4 board (RPI4) will be used, which

guarantees a certain number of ports that can be very useful when connecting it with the Inputs

and Outputs of the system. Due to the unavailability of the first proposed board in the

preliminary concepts, the Raspberry Pi 4 was the chosen answer for the brain of the project.

Figure 2.1 Flowchart of the robot's utilities

8

With the RPI4, a lot of new mechanics are introduced to the original concept of the robot, such

as the wireless control via Bluetooth or Wi-Fi with a virtual machine connected to the board.

Due to budget limits and available stock reasons, the used model is the 2Gb. Although using

the 4Gb model is highly recommended for better performance in these types of image

recognition, this limited performance is a problem in the robot cognitive overall skill.

Most of the programming process is developed outside the Raspberry board and implemented

once it works properly. That is due to the different OS used in both the laptop and the board.

Raspberry uses Raspbian, which is a Debian-based operating system for Raspberry Pi. Since

2013, it has officially been provided by the Raspberry Pi Foundation as the primary operating

system for the Raspberry Pi family of compact single-board computers.

Further information is provided in the prototyping section.

Figure 2.3 Raspbian

2.2.5.4 Cameras

The selection of a camera capable of capturing a good video quality and frames remains crucial

to the current project. That is obviously due to the dependence on object-detection of the robot

for doing actions, depending on the input.

In this case, considering the budget and the processing power of the Raspberry board used, it

was selected the Logitech C270 Webcam HD of 720p/30fps. It has a good balance between

quality, price, and requirements to run effectively.

9

Figure 2.5 Motor-RPI4 Connection

Figure 2.4 Logi 720 CAM

2.2.5.5 Robot Chassis and Mechanical Parts

The chassis will be made of aluminum bars to achieve a simple squared structure that will

provide the robot with low-weight robust integrity towards the environment.

DC motors will be implemented to control the robot's angular and linear movement. These will

be positioned at the chassis, the upper chamber.

To power the initial prototype, the usage of a 12V battery will be necessary and a 5V battery

for the RPI itself.

More explanation can be found in the prototype phase.

10

2.2.6 Development Structure & Methodology

The main goal of the project is to achieve a robot capable of following instructions and of

following an individual. These are the main objectives, and the final utilities of the robot will

grow from those roots.

The first steps are based on the development of an order tracking system by image recognition.

Thanks to this image recognition system, the robot will be able to identify different video inputs

and translate them into actions. The underlying mechanism of this input and output translation

is based on Machine Learning, previously programmed in Python programming language with

several libraries and boards, such as the Raspberry Pi. This key point will be referred to as

Operation Brain. The resources used for the correct fulfillment of the operation will only be the

Python software and the camera to test image inputs and outputs.

Once the approval has been given to the Operation Brain, the base program will be connected

to the SBC, which will transfer the information to the camera and the robot's mechanical

transmission system. This process is called Operation Implant, and it will be in constant upgrade

during the building process.

Parallel to this last point, the mechanical-electronic development of the motor actuators and

chassis of the automaton, which we will name Operation Body, is launched. On the other hand,

the materials used to fabricate the chassis are tested and molded into different prototypes until

reaching an optimal design.

Finally, it should be said that the insertion of space and temperature sensors to perfect and

humanize the product is attractive. We will call this point as Operation Senses.

After considering all the variables and resources, the methodology used will be the following:

The methodology will be heavily influenced by shipping times of the components and the

current chip shortage in the world.

To monitor the project the software Monday Project Management will be used and will help

with the deadlines’ completion.

11

Figure 2.6 Project Milestones

2.2.6.1 Initial Risks

The implementation of the software into the hardware can bring debugging problems. For this

reason, the implementation process requires most of the development phase time and will be

solved with all the necessary material.

Furthermore, the mechanical work can affect the initial budget by the misplacement or damage

of parts. A margin of error has been applied to the initial costs to solve this hypothetical

problem.

• PI Robot Ordering of Materials

• Preliminary Design

Planned Finish

Date:

10/02/2022

• Start Operation Brain

• Set-up of the incoming Material

Planned Finish

Date:

12/03/2022

• Start Operation Implant

• Start Operation Body

• Finish Main Operation

Brain

Planned Finish

Date:

1/05/2022

• Improvements in the prototype design

• Ampliations to Operation Brain and Operation Body

Without

Planned

Finish Date.

12

3. Prototyping

3.1 Chassis

For the desired chassis in the prototype, aluminum bars were used to make a base able to support

the considerable weight of the components plus the load and final weight.

Figure 3.1 Aluminum Bars dismounted

The construction of the chassis is composed of 2 long bars of 500mm and 3 shorter bars of 250

mm that make the rectangular form more robust.

There was a numerous reason on why Aluminum was chosen to build the initial prototype in

the first place:

The aluminum bars allow you to fit different accessories that are made to fit the T-Track shape

of the sides. On the other hand, is very aerodynamic while being light and robust than steel bars

and all of this by being arguably better looking from a esthetically point of view.

13

.

Figure 3.2 Aluminum Bars measures

Name Surface (mm) Length (mm) Units
Import

(€)

Aluminum bars 40x40 500 2 24,00

Aluminum bars 40x40 250 3 20,00

Edge suport 39x39 35 10 16,50

TOTAL

60,50

Table 1 Informative Basic Budget

14

To put the aluminium bars together, 8 bar connections were made using iron connectors that

were attached to the edges as support.

Figure 3.3 Connectors measures

Figure 3.4 Basic Prototype Chassis

The result is a well-rounded and robust chassis that weights around 7kg and with enough space

and surface to place the required components.

3.2 Wheels

One of the interesting properties of the robot are the characteristics of the wheels, it will use the

Mechanum wheel, sometimes called the Swedish wheel or Ilon wheel after its inventor, Bengt

Erland IIon [1923-2008] who designed and patented them in 1972. These wheels are tireless

15

and have a series of rubberized external rollers obliquely attached to the rim with each of them

attacked to a powertrain which generates a propelling force perpendicular to the roller axle that

can be vectored into a normal longitudinal or transverse movement independently of the current

vehicle position.

Figure 3.5 Wheel prototype

Figure 3.6 Four wheels motion

High prices regarding the wheels resulted in the decision to design and implement a personal

design inspired by some CAD and SolidWorks schemes available for open source online.

After some editing in Solid-Works to adjust the diameter of the wheel to a more universal

connection for the future motor these are the results:

16

Figure 3.7 Outer surface Mecanum Wheel

Figure 3.8 Mecanum Wheel Roller

17

Figure 3.9 Solid Works Full 3D Wheel

Figure 3.10 Printed Wheels (3D)

These results are quite good in the 3D printing department. It could be considered that the 3D

printed wheels may not be as good as the ones in the market regarding quality and durability.

The programming of the software directed to control the wheels will depend on the image

detection inputs, and it will follow the combinations of movement dictated by the Mecanum

wheels. This way, a good omnidirectional movement will be implemented.

18

Figure 3.11 Movement formulas

3.3 Motors

Something very interesting happened with the motors. It was decided that a DC motor with a

big torque (like the DC motors of electric chairs) and low rpm would be ideal for the whole

robot because speed is not a necessity in this case.

After ordering the 4 DC motors selected after some research, a delay in the delivery of the items

occurred. War in Ukraine happened, and these motors were coming from a company in St.

Petersburg. This caused the order to be cancelled after 3 weeks of delay. These shocking events

caused a tremendous impediment to progress in the motor-software development, and it was

necessary to redirect efforts into researching more available and optimal motors. In summary,

sanctions to Russia delayed the development of the thesis. However, a good motor for the

prototype was found, a 7.2V DC motor was implemented for the initial robot and put into the

respective four wheels while being connected to the controller.

After some testing, it was decided that the selected motor worked correctly even thou a lower

voltage motor such as the 6V ones were also found to be optimal for the design. The final

prototype can carry both kind of motors with the only downside of changing some code to adjust

to the PWM used.

19

3.4 Software Object Recognition

For the initial test of the first code for the robot a total recognition of 91 different objects was

achieved thanks to the training of a machine learning model.

Always taking into consideration the capacity of the board, it wasn’t optimal to work with high

demanding object detection software, so the solution was to work with raw python

programming and Open CV, a python library with functions that makes the work with camera

detection easier.

All the code used is original work by the creator of the thesis, which integrates different

previous codes regarding object detection. The code will be uploaded to a personal GitHub,

and available for open use.

Here it is seen various examples of the working code. The purpose of these identifications is to

take actions depending on the identification of these images.

Figure 3.12 Viewable code output

20

The number that features on Figure 3.12 corresponds to the probability at which the model is

sure of what it is assigning the label. In this case, the robot is 65.86% certain that the object

recognized is a person. This recognition can be upgraded by increasing the percentage required

to label the input image. However, bearing in mind available budget and resources, it is best

not to have an extremely accurate device.

Figure 3.13 Error Example nº1

As seen in Figure 3.13, the level of certainty of the model when labeling is not very high.

For an improved execution of the recognition model, the dataset COCO (Common Objects in

Context) was implemented. It was created to advance image recognition by containing

challenging, high-quality datasets for computer vision.

Figure 3.14 Object Detection Folder

21

It works with pre-defined points in a set of coordinates (17 in this case) which will appoint a

result depending on the position of said points.

Figure 3.15 Set of coordinates for object "Person"

This model will be improved with the implementation of TensorFlow, a software capable of

training visual detection models. It will be taken into consideration that the COCO dataset is

trained with hundreds of thousands of images already, so the basic objects will be easier to

recognize.

The code developed is made into a module to simplify the primary recognition function applied

to the main program of the robot.

The only problem with this code is the difficulty of processing that involves. The problem with

the performance of the controller is currently being solved.

22

Figure 3.16 First unsuccessful prototyping code

23

After some testing of the code, this first resolution to the problem was found to be not optimal,

when connected to the Raspberry Pi 4 it could not run properly and it carried a considerable

amount of latency which made the actuators misplace the orders.

To solve this massive setback a new code had to be implemented with the help of the

TensorFlow software to adapt better to the capabilities of the Raspberry. This resulted in a great

optimized python script that can keep up with the hardware characteristics.

TensorFlow is an end-to-end open-source platform for machine learning. It has a

comprehensive, flexible ecosystem of tools, libraries and community resources that lets

researchers push the state-of-the-art in ML and developers easily build and deploy ML powered

applications.

The final code for the object recognition is shown below with the example of the object

following option enabled and connected to the motors plus all the commentary explaining the

line-to-line functionality.

Figure 3.17 Modules imported in the code

The OD() function is the responsible for the enabling of the object following routine.

24

Figure 3.18 OD() function for robot's following routine

The following arguments are added to accelerate the calling of the function from the RPI4

terminal:

Figure 3.19 Addition of terminal arguments

25

After the Function basic configuration, the model is called to be processed by the TensorFlow

procedures:

The first name of the testing list used by the machine learning algorithm appeared as an error

named “???” so it had to be manually removed:

Now the imported model must be imported into the program and take out the details of each

recognized objects in the selected frame, in this case, the camera of the robot.

Figure 3.20 Loading the tensorflow model

Figure 3.21 Cleaning of errors in the model list

26

Once the setup is finished, the actual code comes into play by defining the current frame and

putting the input data coming from the TensorFlow to work:

Figure 3.22 Setup of video

Figure 3.23 Processing of information given by the module

27

An important factor for the detection of the objects position (4.5.4 explanation) is needed, in

here a tolerance is selected with the defined coordinates of the center of the camera:

In this example the selected item to follow is a simple water bottle, this can be adjusted to the

desired one like a person or signal. Instead of writing boxes around every recognizable object

that the model gives, the code only will draw the required centroids and rectangles around the

object that is wanted to follow thus making a more optimal use of the CPU.

For the last important part of this example the camera-actuators connection is shown below, by

importing the motor script module developed with functions. (The motor module software is

shown in the 3.5.2 point). Also, it follows the 3.5.4-point principles and applies it to the real

life.

Figure 3.24 Tolerance adjustment of the camera in relation to the object

Figure 3.25 Detection and drawing around the side object (eg. bottle)

28

When running the code, the bottle is set to the right of the centroid of the camera which makes

the robot send the information to the motors telling them to turn right and adjust the position.

The numbers shown on the shell are the centroid position of the recognized object relative to

the camera coordinates.

Figure 3.26 Correction of movement with kinematic functions

Figure 3.27 Object recognized moved to the right

29

If the bottle is set to the left, the actuators are told to turn left to fix the centroid of the camera

to the centroid of the recognized object.

Figure 3.28 Object recognized moved to the left

Once is set inside the tolerance level in the center, if the center of the camera is below of the

bottle centroid the robot is called to move forward.

Figure 3.29 Forward recognition

30

Finally, and once the object centroid is inside the tolerance zone of the camera coordinates

center, the actuators are told to stop.

Figure 3.30 Stop recognition

3.5 Implementation of Software-Hardware Actuators

3.5.1 L298N Motor Driver Module

The motor connection and control will be managed by a L298N motor driver module. The

number of driver modules necessary for the control of motors is given by the following formula:

𝑛𝑀

2
= 𝑛𝐷𝑚 (3.1)

nM: Number of motors

nDm: Number of driver modules

In this case, and for the control of 4 required motors, the number of modules of L298N needed

will be 2.

An L298N consists of two H-bridges, one for output A and one for output B.

31

An H-bridge is a component widely used in electronics to power a load so that we can reverse

the direction of the current that passes through it.

Internally an H-bridge is a formation of 4 transistors connected between Vcc and GND, with

the load supplied between them. If drawn in a sketch, the set has the shape of an "H" from which

it receives its name.

Figure 3.31 Inside scheme H-bridge motor controller

Figure 3.32 H-bridge scheme

32

Acting on the 4 transistors, activating the diagonally opposite transistors of each branch, we can

vary the direction in which the current passes through the load.

By simultaneously connecting the upper or lower transistors, we can put the load Vcc or GND

respectively, a configuration that we will use as a brake.

Finally, we must never turn on both transistors of the same branch (left or right) since we will

be causing a short circuit between Vcc and GND.

The L298N board incorporates electronics that simplify the connection to the H-bridge,

grouping the connections into 3 accessible pins (for each output) and eliminating the possibility

of generating a short circuit

The L298N connection board incorporates a voltage input, a series of jumpers to configure the

module, two outputs A and B, and the input pins that regulate the speed and direction of rotation.

Figure 3.33 H-bridge working current flow

33

3.5.2 DC Motor

Once connected and ready to function, a Python script will be necessary to organize the desired

actions of the motors. But first, it is required to understand how the DC motors work and how

to apply this knowledge to a programming structured text.

Direct Current motors use electricity and transform it into motion by exploiting the

electromagnetic induction principle. This electromagnetic law allows an electromagnetic force

to appear across an electrical conductor in a changing magnetic field.

Figure 3.34 DC motor

34

A motor uses a stator that generates the changing magnetic field around a turning coil of wire

called rotor or armature connected to a battery (basically an electromagnet). This will create a

magnetic field around the wire.

Figure 3.36 Inner principle working of a DC motor

The key to producing motion is positioning the electromagnet within the magnetic field of the

permanent magnet (the field runs from its north to south poles). The armature experiences a

force described by the left-hand rule.

Figure 3.35 DC motor explosive view

35

This interplay of magnetic fields and moving charged particles (the electrons in the current)

results in the torque (depicted by the red arrows in Figure 3.36), which makes the armature spin.

With a single 180 degree-turn by the constant polarity change it is possible to mimic the needed

rotatory movement for the robot wheels.

With this information about the nature of the movement source of the robot it is possible now

to design a structured programming script for the motors inside the Raspberry Pi 4 and using

python as a controlling code.

It is important to consider the pins used for the motor driver module connection because this

will be important for the script development.

Luckily, the RPI4 does have two connections to 5V DC Power, and an extra PWN module

controller is not needed to distribute the signal between the different extensions of the robot.

Figure 3.37 Simple working model of L298N

36

Figure 3.38 Raspberry Pi4 PIN distribution

37

3.5.3 Robot Kinematics into Software

For the final step before programming the motor control, it is necessary to understand the

desired motion. For this instance, the designed kinematics of the robot movement is of utmost

importance to complete the software.

Figure 3.40 Kinematics with respective command number

Figure 3.39 Example of connection applied to the prototype

38

The robot has eight possible movements. This translate into eight different functions that can

be implemented in the final program depending on the camera input. For instance, in Figure

3.40, the forward motion will require the forward running of the four motors at the same time,

while a left horizontal motion will use the backward motion of motors and forward motion of

motors.

The first option used is programming using the L298N module principles.

#importing of modules

import RPi.GPIO as GPIO

import os

import time

#Motor 1 PINS of the Raspberry PI 4

in1a = 23

in2a = 24

ena = 18

#Motor 2 PINS of the Raspberry PI 4

in1b = 6

in2b = 5

enb = 19

#Motor 3 PINS of the Raspberry PI 4

in1c = 17

in2c = 27

enc = 22

#Motor 4 PINS of the Raspberry PI 4

in1d = 16

in2d = 20

39

end = 21

#Configuration of the uP

GPIO.setmode(GPIO.BCM)

#Set-up of PINS for the enable command

GPIO.setup(ena,GPIO.OUT)

GPIO.setup(enb,GPIO.OUT)

GPIO.setup(enc,GPIO.OUT)

#Set-up of PINS for the motor A

GPIO.setup(in1a, GPIO.OUT)

GPIO.setup(in2a, GPIO.OUT)

#Set-up of PINS for the motor B

GPIO.setup(in1b, GPIO.OUT)

GPIO.setup(in2b, GPIO.OUT)

#Set-up of PINS for the motor C

GPIO.setup(in1c, GPIO.OUT)

GPIO.setup(in2c, GPIO.OUT)

#Set-up of PINS for the motor D

GPIO.setup(in1d, GPIO.OUT)

GPIO.setup(in2d, GPIO.OUT)

#Outputs of the Pulse width module.

pwm_a = GPIO.PWM(ena,500)

pwm_b = GPIO.PWM(enb,500)

pwm_c = GPIO.PWM(enc,500)

pwm_d = GPIO.PWM(end,500)

40

#start-up of the PWN at 0

pwm_a.start(0)

pwm_b.start(0)

pwm_c.start(0)

pwm_d.start(0)

Motor A

def forward_motor_a():

 GPIO.output(in1a,False)

 GPIO.output(in2a,True)

def backward_motor_a():

 GPIO.output(in1a,True)

 GPIO.output(in2a,False)

def stop_motor_a():

 pwn_a.stop

#Motor B

def forward_motor_b():

 GPIO.output(in1b,False)

 GPIO.output(in2b,True)

def backward_motor_b():

 GPIO.output(in1b,True)

 GPIO.output(in2b,False)

def stop_motor_b():

 pwn_b.stop

41

#Motor C

def forward_motor_c():

 GPIO.output(in1c,False)

 GPIO.output(in2c,True)

def backward_motor_c():

 GPIO.output(in1c,True)

 GPIO.output(in2c,False)

def stop_motor_c():

 pwn_c.stop

#Motor D

def forward_motor_d():

 GPIO.output(in1d,False)

 GPIO.output(in2d,True)

def backward_motor_d():

 GPIO.output(in1d,True)

 GPIO.output(in2d,False)

def stop_motor_d():

 pwn_d.stop

#Start of the movement functions

#Forward

def forward_movement():

42

 forward_motor_a()

 forward_motor_b()

 forward_motor_c()

 forward_motor_d()

#Backward

def backward_movement():

 backward_motor_a()

 backward_motor_b()

 backward_motor_c()

 backward_motor_d()

#Stop

def stop_movement():

 stop_motor_a()

 stop_motor_b()

 stop_motor_c()

 stop_motor_d()

#left horizontal

def left_horizontal():

 backward_motor_a()

 forward_motor_b()

 forward_motor_c()

 backward_motor_d()

#right horizontal

def right_horizontal():

 forward_motor_a()

 backward_motor_b()

 backward_motor_c()

 forward_motor_d()

#diagonal left up

def diagonal_left_up():

 stop_motor_a()

 forward_motor_b()

 forward_motor_c()

43

 stop_motor_d()

#dagonal left down

def diagonal_left_down():

 backward_motor_a()

 stop_motor_b()

 stop_motor_c()

 backward_motor_d()

#diagonal right high

def diagonal_right_high():

 forward_motor_a()

 stop_motor_b()

 stop_motor_c()

 forward_motor_d()

#diagonal right low

def diagonal_right_low():

 stop_motor_a()

 backward_motor_b()

 backward_motor_c()

 stop_motor_d()

This script dictates the core functions of movements depending on the selected PINS above.

After completing the programming of the motors, it is quite big and it could be simplified by

adding a AdaFruit DC Stepper Motor Hat for Raspberry Pi, which streamlines the process of

programming. This component is out of stock due to the current chip shortage.

Now that it is programmed, it is possible to apply the full schematic needed made with the

Fritzing software.

44

Once the functions defining each possible movement of the robot are completed, it is possible

to execute the visual recognition script with the additional movements addon created and the

defined functions in the object recognition script.

The movement numbers of the commands correspond to the movements indicated in Figure

3.40.

Movement Nº Function name .py

1 forward_movement():

2 backward_movement():

3 left_horizontal():

4 right_horizontal():

5 diagonal_left_up():

6 diagonal_left_down():

7 diagonal_right_high():

Figure 3.41 Connection wanted between motor drivers and Raspberry Pi

45

8 diagonal_right_low():

STOP stop_movement():

Table 2 Programmed list of functions regarding the movement

3.5.4 Camera Software Development for Object Following

With the object recognition and the movement of the motors operational, a problem occurs in

essence of the thesis objective. It is wanted that the robot localizes objects and acts accordingly

to the user wishes or simply follow an object. But the robot does not have enough information

to know how to associate the detected object to the movement of its wheels.

For addressing this problem, a cartesian mathematic solution is presented:

Figure 3.42 Camera frame quadrants

46

Using the camera as a real point in the real world, it is possible to dictate a quadratic view for

the robot to associate the movements with the object detection.

As seen above, the input captured by the camera can be seen as four quadrants of the entire

video capture. For the robot to follow an object, it will be necessary that the object coordinates

are always in the center of the entire capture. The robot will try to maintain the object into the

central (Cx,Cy) position.

By working with the current system and CPU power there will be tolerance errors of every type.

To solve this issue, a smaller square is drawn with (Cx,Cy) as its center. Every object inside the

smaller square will be considered correct and in position with the robot position matrix.

Figure 3.43 Wanted centering of object

47

The intelligence will know that there is a triangle in the image. However, it will be forced to

position the triangle view (which has a rectangle around its center identifying it) into the

tolerance box in the middle, thus making the robot turn right with the function described in the

code.

Figure 3.45 calculations for the application of tolerance rectangles

Figure 3.44 Tolerance idea for camera

48

This solution generates unlimited possibilities of configuration for the result, but an important

one is a possibility of following a human to help carry items or whatever the owner wants.

The result may experience lag resulting from the CPU calculation power capacity and the

velocity of the desired object to recognize.

It is crucial to bear in mind that the world in which the robot lives is bidimensional and perfectly

plane; there is no addition of the z-axis. Therefore, it is not equipped to move the camera up

and down.

3.5.5 PWM Control

After the configuration of the motors and the cameras inputs, there was a vital need of speed

control of the motors due to the DC motors running at full speed every time when being

actioned. So how can motors, an analog controlled device, be controlled if the signals are 1 or

0?

It is known that digital signals working inside the motor module controller and the RPI4 have

two positions: ON or OFF, or better known as 1 or 0. Analog signals, on the other hand, can be

on, half-way, two-thirds, off or all the way to an infinite number of positions between 0 and 1.

Figure 3.46 Deviation consideration proposal

49

In electronics analog and digital are handled differently but are often put together to work in

harmony.

Often in engineering there is a need to translate that digital output into an analog device so it

can understand the desired behavior needed. A solution to tackle this problem uses the Pulse

Width Modulation or PWM.

PWM is a tricky technique because it is not a true analog output in nature. Instead, it mimics an

analog-like result by applying power in pulses of regulated voltage.

Figure 3.47 PWM diferent duty cycles

50

For this case, the voltage given by the Raspberry Pi 4 to the L298N is a maximum of 5 volts,

which will always be the value in case there is an ON signal coming out of the PIN. If applied,

the PWM method can regulate the final voltage otorgued to the motor controller, thus tricking

the mentioned controller into giving the motor less or more voltage. As it is known, these

variations in voltage will vary the resulting speed of the DC motor.

It is taken into consideration that in this case, the PWM is efficient due to the first law of motion,

not stopping the motor abruptly when the power goes off and on in small intervals of time. This

plays a crucial role in the result of the general behavior.

“LAW I. Every body perseveres in its state of rest, or of uniform motion in a right line, unless

it is compelled to change that state by forces impressed thereon“.

Now that it is clear what the PWM is, how do we translate its inner behavior into aspects of

tangible electronic concepts such as frequency or software?

For this, maximum voltage, frequency, and the duty cycle are the factors to consider when

applying this method to the software. If taken the duty cycle and multiplied by the maximum

voltage level, an average voltage level will result in what the motor is seeing at that moment in

time.

 𝐼𝑛𝑠𝑡𝑎𝑛𝑡 𝐷𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 ∗ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝐿𝑒𝑣𝑒𝑙 = 𝐼𝑛𝑠𝑡𝑎. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (3.2)

The duty cycle can change to affect the average voltage that the motor experiences. The

frequency of the cycles can increase. The pulse can be increased even in length. These can all

happen together, too, but in general, it’s easier to think of as either duty cycle increasing or

frequency increasing to increase the speed of the motor.

The only thing that hasn’t changed in all of this is the high voltage level. Because “no” is always

the same for the digital output, merely flicking the output on-and-off at varying speeds and for

changing periods of time. This is how you get pulse width modulation to fake an analog output.

MCUs are digital. An example of something that can create a true analog output would be a

transducer.

51

To sum up, to control the average voltage, it is only possible (via software) to vary the instant

duty cycle with a fixed power source powering the RPI and the controller. To do this, a python

API is inside the RPI.GPIO library is used and introduced into the code. First we set the PIN

(ena = pin 18) wanted to produce the PWM and the desired Hz (500):

pwm_a = GPIO.PWM(ena,500)

Following by the initial set-up of the duty cycle at the beggining of the code:

pwm_a.start(0)

Now the system is set up, but a final consideration is to be taken; the RPI only gives 5V, but

the controller translates this 5V into 12V in this case (it depends on the powering of the

controller). A controlled duty cycle would mean different speeds:

Duty Cycle (%) Average Voltage – 12V (V) Average Voltage – 9V (V)

0 0 0

25 3 2.25

50 6 3.5

60 7.2 5.4

75 9 6.75

80 9.6 7.2

100 12 9

Table 3 Motors duty cycle to Voltage relation

To control the current test motor of 7.2V, a duty cycle of 60% for a Vcc = 12V would work or

a 80% for a Vcc = 9V as well. Because of this data, we can choose the 12Vcc source to have

more overall control. However, the L298N takes up to 3V out of the Vcc to function properly.

So, the actual duty cycle will be superior to the ideal one.

52

When testing the PWM software with the motors, a problem occurred that was not taken into

much thought before. That is that the motors usually need a peak starting voltage for them to

be able to start-up properly.

Figure 3.48 Current peaks

To solve the inrush current problem via software, the starting duty cycle was set to a 100% for

1ms before the DC motor started running so it would be able to use the maximum

voltage(current) to rotate and after said time the duty cycle will change into the nominal speed

of the motor.

Pwm_a.ChangeDutyCycle(100)

Sleep(0.01)

Pwm_a.ChangeDutyCycle(nominal)

3.6 Shape detection and Lane following

Implementing a routine that can recognize a predetermined lane and give information to the

motors so that the robot follows the lane is possible with the pixel summation method.

53

First, the pixel summation method uses the recognition of an image and all its bits value, which

are added in the frame to give out a determined value. This is accomplished by turning the

frame into a grayscale, in which the numbers range from 0 to 255, as of the 8-bit value integer

standard.

 28 = 256 → [0 − 255] (3.3)

With the value 0 assigned to a black bit colour and the value 255 to a White bit color,

respectively.

Figure 3.49 Examples of grey-scaling binary matches

This method is widely used for the differentiation of objects by its colour, and it is very effective

in the fields of self-driving objects that lack radars and with clearly determined paths. As seen

in the previous figures, the frame image introduced to the robot is converted into a binary colour

composition of black or white, and the bits of value 255 will be the ones used to determine the

road.

54

Figure 3.50 Summatory of pixels

As a result of this method, the robot will follow a white line using the colour recognition

detector. It is possible to use edge detection to complete it. A thresholding function is created

to differentiate the wanted path by using the gray scaling of the frame.

Figure 3.51 Threshold programming

55

Figure 3.52 Lane with applied threshold

It was also tried to implement the Canny Edge detection technique, and the results were optimal

as well.

Figure 3.53 Lane with applied canny edge

In the next step, a problem occurs; the images taken at the start of the programming were taken

with the camera placed with a bird view perspective. It is wanted that the robot has the camera

looking onward and not looking at the floor. Still, the bird-eye view is perfect for optimal work

of the code. Thus to maintain this, a warping methodology is used.

With the warping of the image, the robot can identify the curves of the lane at the correct time.

This is widely used in the motor industry to help the user identify its surroundings better with

56

a simulation of a third view perspective. It is crucial to clarify that these cars use cameras from

all points of view and the current robot only uses one limiting its knowledge to only one plane

of view.

Figure 3.54 Bird-eye perspective in modern cars

Luckily, with the Open CV software there is a function already installed within the module that

performs the warping methodology.

Figure 3.55 Image warping function

57

To capture the key 4 vertex points of the rectangle shape road, two functions are used with the

help of the getTrackbarPos(), which is Function in Python OpenCV that returns the current

position of the specified trackbar. The function takes two arguments. The first is for the trackbar

name and the second one is the window name which is the parent of the trackbar. It returns the

trackbar position.

Figure 3.56 Trackbar functions used to detect the current contour points

Figure 3.57 Warping depiction

58

Figure 3.58 Warping applied to lane

The next step after getting the bird eye perspective is to apply the pixel summation method to

understand where the curve is going.

Figure 3.59 Motor logic with camera control in lane

As explained before, the number of white pixels is added to a total number and depending on

which side of the camera has more value, the robot will turn to said direction.

Figure 3.60 Addition of arrays of bits

When the addition is translated into the commands 'go right' or 'go left' or 'stay in the centre',

the routine to follow a line is created at least.

59

The only problem regarding the project and the solution is the capacity of processing power of

the Raspberry pi 4 of 2GHz. It was found that, as well as other aspects of the project, the small

processing power limits the usability of the camera to implement the desired line tracking.

This was compared to the much stronger version of the SBC, the RPI4 8GHz, which appeared

to run smoothly. This confirmed the viability of the code, but the costs increased almost by 40%

of the whole robot prototyping process, remaining a heavy liability, so it was decided to

implement a much simpler solution.

3.7 Used line routine if CPU is not Optimal

As explained, the CPU couldn’t withstand the optimal processing power needed to apply the

visual recognition of the lane so instead of overusing the camera a solution is implemented with

analogic infra-red sensors.

The IR sensor is an electronic sensor that measures the infrared light radiation from objects in

its field of view, it can detect or measure the infrared radiation or the changes in said field from

an outer source or inbuilt source. It is widely used to keep track of the changes in the

environment.

Figure 3.61 IR working on body

The IR is crucial for the robot to be able to keep track of a line without using much CPU in the

process which is perfect for the current situation. The IR LED transmitter can transmit the light

and the photodiode (Receiver) waits for the transmission to come back and it will only return if

60

its reflected by a surface. The key aspect of the implementation resides in the characteristic that

only the white colour surface can completely reflect the IR transmission whereas the black

colour surface will completely omit the light.

Two IR sensors are used to check if the robot is on the correct track with the line and these are

connected directly to the functions representing the motors behaviour. The sensors are placed

in one on either side of the line and if they detect the black line, they send information of action

to the motor driver modules.

Figure 3.63 Programming sequence

For the forward movement the two sensors won’t detect the black lane meaning its on the right

path.

Figure 3.62 IR working on color

61

Figure 3.64 Robot in forward position

If the left sensor touches the black line, the robot will turn to the left and if the right sensor

touches, it will turn to the right. Considering that the camera is also being used for identification

of signals, the stop function won’t depend on the IR sensors but on the signal recognition of the

Stop signal received on the camera.

Figure 3.65 Robot with respective routines of turning

62

Now that the basic understanding of how it should work, the code applied is very simple in

comparison to the visual recognition of the lane due to the processed information is analogue

and direct instead of a digital cascade of images.

First, the sensors act as inputs from the point of view of the RPI4 so the GPIO PINS connected

to the outputs of the sensor must be configured as inputs, in this case the PINS 25 and 26 are

used.

import RPi.GPIO

Setup of the sensors

GPIO.setmode (GPIO.BCM)

GPIO.setup(25,GPIO.IN) #GPIO 25 -> Left IR out

GPIO.setup(26,GPIO.IN) #GPIO 26 -> Right IR out

Now to make it cooperative with the main functions of movement the iterations of condition

are implemented:

if(GPIO.input(25)==True and GPIO.input(26)==True): #both white move forward

 forward_movement()

elif(GPIO.input(25)==True and GPIO.input(26)==False): #turn left

 diagonal_left_up()

elif(GPIO.input(25)==False and GPIO.input(26)==True): #turn right

 diagonal_right_high()

Now the cool magic touch happens when the combination of sensors and camera comes to play,

if this code is applied to the TensorFlow object recognition it is possible to assign objects as

signals placed on the visual field of the road.

Once the code is applied to the main function of lane following, the robot will follow the lane

until a signal is seen in which case an action will be performed.

63

For the first time the robot was supposed to recognize a circle, triangle, and rectangle but to

help with the current software and to not overload the RPI4 with code to process 3 types of

different objects were selected.

These 3 items are a stop sign, a keyboard, and a mouse for the current system of 2GHz RPI. It

was found that with this system the robot worked better but with an upgrade in SBC a

recognition of any shape would be possible in combination with the written software or if the

object recognition model from the machine learning testing changed but due to, again, CPU

usage it is not viable.

With this said, the only changes needed to apply to the current OD() function would be the

following:

If object_name == “stop sign”:

 Stop_movement() #previously programmed with motor module

 Sleep(5)

 continue

Elseif object_name == “keyboard”:

 right_horizontal() #previously programmed with motor module

 sleep(5)

 left_horizontal() #previously programmed with motor module

 continue

Elseif object_name == “mouse”:

 Left_horizontal() #previously programmed with motor module

 Sleep(5)

 Right_horizontal() #previously programmed with motor module

 continue

In the end, achieving the recognition of these objects while tracking the lane with the sensors

result in the same desirable outcomes as with the shapes. In this case if applied, the bottle will

stop the car for 5 seconds before returning to move, the keyboard will make the robot move

horizontally to the right as in the user wants the robot to move to the side to be able to load

64

some weight and the same case for the mouse but here it will move to the left before moving to

the right back at the track and following with the procedure.

Figure 3.66 Detection of keyboard with movement

Figure 3.67 Movement return

Once the software was properly implemented some tests were applied to calibrate the results.

The tests started with the generic stop signal used for day-to-day driving signaling.

65

Figure 3.68 Stop signal used

When calling the function name of Lane_following() the camera is activated and the IR sensors

are validated to the PINS.

Figure 3.69 First Encounter with STOP signal

66

After stopping the 4 outputs of current to the 4 motors it waits a predeterminate 5 seconds before

actioning the motors again.

Figure 3.72 5 seconds after obtaining the STOP signal

Figure 3.70 Stop Function Figure 3.71 Forward Function

(yellow indicates clockwise

movement)

67

Now for the keyboard testing occurs the desired result as well, when it is detected, the motors

activate by the usage of the horizontal right function.

To finish with the signals utilized a test on the mouse was initialized and the result is the same

as the keyboard but to the left.

Figure 3.73 Identification of the mouse

68

4. Results of prototyping and Conclusions

To give an end to the development of the product, the first prototyping structural build is

presented in a way that is easily applied to any chassis selected for the construction of the robot

while taking into consideration the key hardware parts.

Figure 4.1 Complete connection scheme

Figure 4.1 shows a battery of 9V, which could be replaced by a 12V one in case more motor

power transmission is desired. All the connections shown are in line with the current

programming and the programmed pins. An electrical scheme was developed to improve further

bettering of the robot.

69

As said before, the Battery applied is 9V but could be swapped by a 12V one. After testing the

electrical connexions, the correct working of the system was confirmed, and this made possible

the proposition of developing a PCB with the key components to facilitate the overall

production of the final product. The result of the PCB is not optimized and was not tested, but

a first prototype is introduced for further improvement, the paths that cross with another path

are on different sides of the board it cannot be appreciated due to the same colour being used.

Figure 4.3 PCB first prototype without optimal pathing

Figure 4.2 Electrical Scheme

70

The PCB consists of the hardware soldered onto the top of the SBC to make it more compact.

A final problem occurred with the final usage of the chassis for the robot, and it was not possible

to have the fully functional robot for the writing of the documentation report, but the

functionality regarding the sensors, the program and the actuators were successfully tested

without the main chassis implementation.

This meant that with the shown wiring with the software embedded into the RPI4 and the

selected items for its construction, the robot could fit any chassis with a reasonable weight in

which the only important consideration would be the correct selection and application of 6 to

7.2V motors to cooperate with the software routines.

Figure 4.1 Final look of connections

71

When operating with the Lane following routine the following behaviour happens in a

predetermined circuit put together by the user:

Figure 4.2 Start of the circuit

Figure 4.3 Detection of object assigned to horizontal movement to the right

72

Figure 4.4 Loading of package once positioned

Figure 4.5 Curve assimilation and correction to the right

73

Figure 4.6 Stop sign interpreted and motors stopped

Figure 4.7 Right turn activated by IR sensors

74

Figure 4.8 Horizontal left movement activated by interpretation of object

Figure 4.9 End of line

75

Now if the OD() function is activated the result is the following of an object that first the

program asks what item we want to follow from a list given to the user with the 89 possibilities.

It allows the user to be able to have a moving backpack behind to carry packages or house chore

items such as clothes.

A developing of a robot that helped with the logistics of carrying loads with the possibility of

following a beacon or by the usage of a track with different signals with each having a purpose

was the initial idea. Was the final result acceptable?

The results can confirm the consistency of the initial proposal through the whole development

of the overall functional prototype. An optimal result was achieved with some downsides from

the original plan like not having the fully functional robot with its chassis attached for the

documentation process, the overheating of some components that damaged the speed of

development or the not planned overuse of CPU in the SBC. However, these difficulties were

studied, and the better solutions appeared out of range for the initial budgeting which were

acknowledged and documented in a way that with the incrementation of the investment a perfect

prototype would be easy to produce.

The initial objectives of developing a track system and a following system have been tackled

with the software working to perfection. Also, the implementation of the actuators to the

software was also a success like the ability to make the camera cooperate with the motor drivers

and the IR sensors with the SBC at the same time which was challenging at first.

A personal reflexion shows that even thou a lot of problems appeared during the process, a new

milestone to solve them was always implemented and that is what made this project a good

engineering experience, if there is a problem find a solution or an alternative to reach the final

goal with the documentation available.

This project made usage of concepts from 12 subjects studied in the degree such as digital

electronics, instrumentation, analogue electronics I & II, Microprocessors, robotics, control

engineering, electrotechnology, English, circuit theory, computer science, object physics and

concepts picked during the Erasmus programme like the consideration of the PCB’s or the

PID implementations.

76

It was great going from having zero knowledge on computer vision models, the raspberry inner

workings and the many python libraries used, to being able to perform at an optimal level if put

in a situation with said items involved.

77

5. References

[1] Abualkibash, M., ElSayed, A., & Mahmood, A. (2013, January 1). Highly Scalable,

Parallel and Distributed Adaboost Algorithm Using Light Weight Threads and Web

Services on A Network of Multi-Core Machines (Research Gate. Retrieved April 16,

2022, from https://www.researchgate.net/figure/Summation-of-all-pixels-on-top-and-

to-the-left-of-x-y-is-the-integral-image-value-at-x-y_fig1_237054341

[2] Electronics HUB. (2018, February 24). IR sensor information. Retrieved April 14, 2022,

from https://www.electronicshub.org/interfacing-ir-sensor-with-raspberry-

pi/#:~:text=The%20IR%20Sensor%20Module%20has,used%20a%20simple%205V%

20Buzzer.

[3] Fritzing. (n.d.). Schemes Software. Retrieved June 5, 2022, from https://fritzing.org/

[4] GitHub. (n.d.). Integration of code. Retrieved February 2, 2022, from

https://github.com/

[5] Hassan, M. (n.d.). Computer Vision Training. CV Zone. Retrieved March 25, 2022,

from https://www.computervision.zone/

[6] Krishna, S. (2020, April 2). Initial wheel prototype. STL Finder. Retrieved March 8,

2022, from https://www.stlfinder.com/model/mecanum-wheels-JT0Che44/2929837/

[7] Logitech. (n.d.). Camera Datasheet Documentation. Retrieved February 1, 2022, from

https://www.logitech.com/fr-ch/products/webcams/c270-hd-webcam.html

[8] Microsoft. (n.d.). Coding Environment used in the document. Visual Studio Code.

Retrieved January 1, 2022, from https://code.visualstudio.com/

[9] Open CV. (n.d.). Object Detection software. Retrieved January 5, 2022, from

https://opencv.org/

[10] Python. (n.d.). Python Documentation. Retrieved February 5, 2022, from

https://www.python.org/

[11] Raspberry. (n.d.). Raspberry PI 4 OS. Raspbian. Retrieved January 1, 2022, from

https://www.raspbian.org/

[12] RS Components. (n.d.). DC motor information. Retrieved March 3, 2022, from

https://ie.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dc-motors-

guide#:~:text=DC%20motors%20take%20electrical%20power,fixed%20within%20th

e%20output%20shaft.

[13] TensorFlow. (n.d.). TensorFlow AI Models for Object Detection. TensorFlow.Com.

Retrieved March 3, 2022, from https://www.tensorflow.org/resources/learn-

ml?gclid=EAIaIQobChMIrtDh0oyq-

AIVoRkGAB1h0ggUEAAYASAAEgIlQPD_BwE

https://www.researchgate.net/figure/Summation-of-all-pixels-on-top-and-to-the-left-of-x-y-is-the-integral-image-value-at-x-y_fig1_237054341
https://www.researchgate.net/figure/Summation-of-all-pixels-on-top-and-to-the-left-of-x-y-is-the-integral-image-value-at-x-y_fig1_237054341
https://www.electronicshub.org/interfacing-ir-sensor-with-raspberry-pi/#:~:text=The%20IR%20Sensor%20Module%20has,used%20a%20simple%205V%20Buzzer
https://www.electronicshub.org/interfacing-ir-sensor-with-raspberry-pi/#:~:text=The%20IR%20Sensor%20Module%20has,used%20a%20simple%205V%20Buzzer
https://www.electronicshub.org/interfacing-ir-sensor-with-raspberry-pi/#:~:text=The%20IR%20Sensor%20Module%20has,used%20a%20simple%205V%20Buzzer
https://fritzing.org/
https://github.com/
https://www.computervision.zone/
https://www.stlfinder.com/model/mecanum-wheels-JT0Che44/2929837/
https://www.logitech.com/fr-ch/products/webcams/c270-hd-webcam.html
https://code.visualstudio.com/
https://opencv.org/
https://www.python.org/
https://www.raspbian.org/
https://ie.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dc-motors-guide#:~:text=DC%20motors%20take%20electrical%20power,fixed%20within%20the%20output%20shaft
https://ie.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dc-motors-guide#:~:text=DC%20motors%20take%20electrical%20power,fixed%20within%20the%20output%20shaft
https://ie.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dc-motors-guide#:~:text=DC%20motors%20take%20electrical%20power,fixed%20within%20the%20output%20shaft
https://www.tensorflow.org/resources/learn-ml?gclid=EAIaIQobChMIrtDh0oyq-AIVoRkGAB1h0ggUEAAYASAAEgIlQPD_BwE
https://www.tensorflow.org/resources/learn-ml?gclid=EAIaIQobChMIrtDh0oyq-AIVoRkGAB1h0ggUEAAYASAAEgIlQPD_BwE
https://www.tensorflow.org/resources/learn-ml?gclid=EAIaIQobChMIrtDh0oyq-AIVoRkGAB1h0ggUEAAYASAAEgIlQPD_BwE

