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ABSTRACT Parkinson’s disease (PD) is the second most frequent neurodegenerative disease associated
with several motor symptoms, including alterations in handwriting, also known as PD dysgraphia. Several
computerized decision support systems for PD dysgraphia have been proposed, however, the associated
challenges require new approaches for more accurate diagnosis. Therefore, this work adds spectral and
cepstral handwriting features to the already-used temporal, kinematic and statistics handwriting features.
First, we calculate temporal and kinematic features using displacement; statistic features (SF') using dis-
placement, and horizontal and vertical displacement; spectral (SDF') and cepstral (CDF') using displacement,
horizontal and vertical displacement and pressure. Since the employed dataset (PaHaW) contains only
37 PD patients and 38 healthy control subjects (HC), then as the second step, we augment the percentage
of the smaller training set to equal the larger. Next, we augment both classes to increase the training
patient’s data and added random Gaussian noise in all augmentations. Third, the most relevant features were
selected using the modified fast correlation-based filtering method (mFCBF). Finally, autoML is employed
to train and test more than ten plain and ensembled classifiers. Experimental results show that adding
spectral and cepstral features to temporal, kinematics and statistics features highly improved classification
accuracy to 98.57%. Our proposed model, with lower computational complexities, outperforms conventional
state-of-the-art models for all tasks, which is 97.62%.

INDEX TERMS Parkinson’s disease, dysgraphia, online handwriting, feature extraction, data augmentation,

autoML.

I. INTRODUCTION

Biometrics can be used for e-security and e-health [1] and can
be grouped based on two traits. Morphological biometrics,
such as fingerprints or eye pupils, use direct measurements
of the physical traits of the human body [2], [3]. Behavioral
biometrics, such as handwriting and drawing, use specific
drawing and handwriting tasks performed by the subjects
involved in data collection [4]. From a health perspective,
online handwriting biometrics are more appealing and infor-
mative on states of diseases, such as dementia, than other
popular biometrics traits, such as fingerprints or iris [3], [4]
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because they make part of routine functional activities from
which evidence are drawn affected by the disease.

In the last two decades, online handwriting processing has
been employed in the computerized assessment of neurode-
generative disorders (e.g., Parkinson’s disease (PD)) [5], [6].
Patients with PD experience progressive loss of dopamin-
ergic neurons in substantia nigra pars compacta (located
in the midbrain), which is consequently associated with
cardinal motor symptoms such as bradykinesia, rigidity,
resting tremor, or postural instability [7]-[9]. Therefore,
especially during the clinical phase of the disorder, we can
observe freezing of gait [10], hypokinetic dysarthria [11],
hypomimia [12], or alterations in handwriting [6]. The lat-
ter was initially linked with micrographia, i.e., a progres-
sive decline in amplitude (vertical micrographia) or with

141599


https://orcid.org/0000-0002-4187-9352
https://orcid.org/0000-0003-0605-1282
https://orcid.org/0000-0002-1160-4163
https://orcid.org/0000-0002-6195-193X
https://orcid.org/0000-0003-0026-5423

IEEE Access

J. A. Nolazco-Flores et al.: Exploiting Spectral and Cepstral Handwriting Features on Diagnosing Parkinson’s Disease

(horizontal micrographia) of letters [13]. Nevertheless,
micrographia is one manifestation of altered handwriting in
patients with PD. Others include more pronounced changes
in kinematics and dynamics too. Letanneux et. reported a
connection to developmental dysgraphia and proposed a new
and more general term, PD dysgraphia [14].

Recently, several designs of decision support systems
for diagnosing different PDs based on speech/voice anal-
ysis [15]-[20] or gait monitoring [21]-[23], have been
proposed. However, compared with online handwriting pro-
cessing, both speech assessment and gait monitoring require
more technical equipment and are vulnerable to low sig-
nal quality due to a noncontrolled environment. Speech
assessment requires high-quality recording conditions with-
out background noise and further postprocessing of recorded
speech. This includes human-operated speech segmenta-
tion, making the whole process more difficult. Gait moni-
toring or tremor assessment techniques require specialized
equipment, such as motion capture systems, accelerome-
ters, and gyroscopes. However, the diagnosis of PD using
handwriting processing can be easily administered at the
clinic or a patient’s home. Handwriting acquisition is
simple and natural and requires no timing or exhaustive
repetitions.

A comprehensive review of quantitative analysis of PD
dysgraphia and its computerized diagnosis for published
works until 2019 has been summarized [4]-[6], [14].
Furthermore, we review the state-of-the-art designs pub-
lished in 2020 and 2021, focusing on articles using online
handwriting.

The rest of the paper is organized as follows: Section II
reviews related works and presents state-of-the-art results
obtained in PD diagnosis based on the PaHaW database.
Section III describes the H20 platform used in this work.
Section IV describes the PAHAW database. Section V
describes the feature extraction process used and describes
the type of feature obtained. Section VI presents a brief
explanation of the modified version of the fast correlation-
based filtering feature selection methodology. Section VII
describes the front-end hyperparameters. Section VIII
describes the experiments conducted and their results.
Finally, in Section IX, we present final remarks, comments,
and conclusions.

Il. RELATED WORKS
This section reviews related works and state-of-the-art results
obtained for PD diagnosis. Table 1 shows a summary of the
state-of-the-art results.

Ammour et al. [24] quantitatively analyzed online
handwriting in 28 PD patients and 28 age-matched healthy
controls (HC). They quantified the performance of sub-
jects (when writing a text in Arabic letters) accord-
ing to 1482 kinematics (velocity, acceleration, jerk, etc.),
dynamic (pressure, tilt, azimuth, etc.), temporal (e.g., dura-
tion), and some additional features. From a semi-supervised
approach (employing cluster analysis), they differentiated the
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PD group with 71.44% accuracy. Furthermore, they con-
cluded that the complications of fine motor skills in PD
patients were mainly manifested in the kinematic feature
set.

Liaqat Ali, et al. [25] propose a method for dealing with
the highly unbalanced handPD dataset. To improve the PD
detection accuracy on this dataset, they developed a cascaded
learning system that cascades a Chi2 model with an adaptive
boosting (Adaboost) model. Experimental results confirmed
that the proposed cascaded system outperforms six similar
cascaded systems using six state-of-the-art machine learning
models, respectively.

Taleb et al. [26] introduced a PD diagnosis concept
that uses convolutional neural networks (CNN) fed by
spectrograms (calculated from various online handwrit-
ing/drawing tasks) and CNN bidirectional long-short-term
memory networks (CNN-BLSTM) fed by raw time series.
In the publicly available dataset called HandPDMultiMC,
containing 21 PD and HC, respectively, a classification
accuracy of approximately 97.62% was achieved by com-
bining CNN-BLSTM models trained with jittering and syn-
thetic data augmentation. They trained 204,060 parameters
model for one day using an NVIDIA GTX 1080 GPU
of 8 GB.

Gupta er al. [27] explored the effect of age and gen-
der on the performance of classification models. Thus, they
used the PaHaW database [28] containing 37 PD patients
and 38 HC. The subjects performed seven tasks including
a sentence or isolated words. The data were parametrized
using kinematic, entropic, and energetic features and fed into
age- and gender-dependent support vector machine (SVM)
models. A distinct set of discriminative features was observed
in each category (age vs. gender). The results showed an
improved classification accuracy of a general model from
75.76% to 83.75% and 79.55% in a female and male set,
respectively.

Aouraghe et al. [29] focused on the effect of progressing
fatigue in PD dysgraphia. They enrolled 40 PD patients and
HC, respectively, copying a multiline paragraph in Arabic
letters. First, the paragraph was segmented into individual
lines and then, each line processed separately using a set of
temporal, kinematic, dynamic, spectral, entropy-based, and
wavelet-based features. The feature space was modeled by
k-nearest neighbor classifier (KNN), SVM and decision trees.
An accuracy of 92.86% was obtained when processing the
last line of the paragraph, i.e., the line where the fatigue is
mostly accented.

Deharab et al. [30] introduced a novel online handwrit-
ing parameterization using dynamic writing traces warping
(DWTW).DWTW was applied to kinematic patterns of hand-
writing and returned parameters linked with the similarity
between normative and pathological time series. The features
were modeled using SVM and were evaluated on the PaHaW
dataset (29 PD and 32HC; all eight tasks including hand-
writing and drawing of Archimedean spiral), and an accuracy
of 88.33% was achieved.
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TABLE 1. State -of -the -art in PD diagnosis based onUSING the PaHaW database. Legend: SVM - support vector machine; RF - random forests; ET -
extremely randomized trees; ADA - AdaBoost, TKEO - Teager-Kaiser energy operator; EMD - empirical mode decomposition; DWTW - dynamic writing
traces warping; CGP - cartesian genetic programming; 1DCL - 1-dimensional convolutional layer; BiGRUs - bidirectional gated recurrent units; ACC -
accuracy; SEN - sensitivity; SPE - specificity; PRE — precision; REC - recall, AUC - area under the ROC curve.
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Parziale et al.
published works,

most
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[31] addressed a recurrent issue in

clinical interpretability. More

specifically, authors frequently use handcrafted features
poorly linked to physiological processes and employ less
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interpretable machine learning models (so-called black
boxes).

Such systems are unacceptable for clinicians. There-
fore, cartesian genetic programming (CGP) (which pro-
vides a tradeoff between performance and interpretability)
was used in comparison with the more common classifiers.
The proposed methodology was evaluated on two datasets,
PaHaW (37 PD and 38 HC; all tasks were used) and
NewHandPD (31 PD and 35 HC; subjects performed a spiral
and a meander). Using conventional temporal, kinematic, and
dynamic features, CGP produced more accurate results than
white-box methods (reaching 71.18% in PaHaW and 80.39%
in NewHandPD) and more interpretable than the black
boxes.

Lamba et al. [32] analyzed basic temporal (e.g., duration)
and kinematic (e.g., velocity, acceleration, jerk) measures
in 62 PD patients and 15 HC (enrolled in the frame of the
Irvine (UCI) Parkinson’s disease spiral drawings dataset).
Due to high imbalance, the synthetic minority-oversampling
technique was employed to balance the cohort. Next, data
were modeled by several machine learning models, e.g.,
SVM, AdaBoost, and XGBoost. Finally, a classification accu-
racy of 96.02% was reported for AdaBoost.

Diaz et al. [33] discussed processed time series of online
handwriting (including velocity, acceleration, jerk, displace-
ment, pressure, etc.) using one-dimensional convolutions and
bidirectional gated recurrent units (BiGRUs). This end-to-
end pipeline was applied to PaHaW (37 PD and 38 HC; all
tasks were used) and NewHandPD (31 PD and 35 HC; all
tasks were used). The method provided competitive results
(96.25% accuracy in PaHaW and 94.44% in NewHandPD),
thus confirming the effectiveness of the sequence learn-
ing paradigm for processing sequential handwriting
data.

Impedovo et al. [34] investigate different velocity-based
signal processing techniques to address PD assessment.
He uses kinematic, energy, and cepstral features. The energy
and cepstral features are similar to the ones used in this
work, but they do not use filterbank, and they so not use the
filterbank output to calculate the cepstral. An accuracy result
of 93.7% for all tasks, and 98.44% when he selects the top
three tasks was reported.

Mucha et al. [35] combine kinematic features with
fractional-order derivatives and reported an accuracy of
97.14%, for the continuous and repetitive task, such as
Archimedean spiral.

Finally, in [36] we proposed the use of spectral and cep-
stral features for emotion recognition. Here, we concatenated
these features with very simple temporal features.

This study explores new approaches of online handwriting
parameterization, augmentation, analysis, and modeling with
a special focus on improved diagnostic accuracy. Further-
more, we explore the impact of newly proposed spectral
and cepstral features on classification accuracy and improve
the pipeline by adding data augmentation and modified fast
correlation-based filtering feature selection method.
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TABLE 2. List of machine learning models.

Classification Algorithms
Deep learning (Deep neural networks-DNN)
Distributed random forest (DRF)
Extremely randomized trees (XRT) models)
Generalized linear model (GLM)
Generalized additive model (GAM)
Gradient boosting machine (GBM)
Naive bayes classifier (NBC)
Rulefit (RF)
Stacked ensembles (SE)
XGBoost (XGB)
Support vector machine (SVM)

llIl. DATA MODELING

For data modeling, we use autoML H20 [37], [38]. Auto-
matic machine learning (AutoML) is the process of automat-
ing algorithm selection, feature generation, hyperparameter
tuning, iterative modeling, and model assessment. It eases
training and evaluation of machine learning models. AutoML
includes many ML models, however, we limit the number of
models to the ones shown in Table 1. Also, it ensembles the
best models that outperform individual models. Furthermore,
it uses the area under the ROC curve as the default ranking
metric for binary classification. The configuration is such that
individual models are tuned using a two-fold cross-validation
set. AutoML automatically performs Bayesian hyperparame-
ter optimization.

Since a default performance metric for each machine learn-
ing task is specified internally, the leaderboard is sorted by
that metric.

In Table 2, ML models include stacked ensemble mod-
els. The stacked ensemble is an efficient ensemble method,
such that the predictions, from machine learning algorithms,
are used as inputs in a second layer learning algorithm.
In the second layer, H20 ensembles all models, (Stacke-
dEnsemble_AllModels), and the best of family, (Stacke-
dEnsemble_BestOfFamily), including the best models of
each kind in the final ensemble.

IV. PAHAW DATABASE

This study employed the Parkinson’s disease handwriting
database (PaHaW), containing 37 PD patients and 38 age-
and gender-matched HC enrolled at the department of neu-
rology, St. Anne’s university hospital in Brno [28]. Besides
age and gender, the PD group is described in terms of PD
duration, unified Parkinson disease rating scale part V score,
and levodopa equivalent daily dose.

All subjects have no history or presence of any psychiatric
symptom or disease affecting the central nervous system,
except for PD. The acquisition was performed when the
patients were in their ON state, i.e., approximately one hour
after taking levodopa.
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FIGURE 1. Online-drawing time series of the first task (Archimedean
spiral drawings.

During the acquisition, the subjects were rested and seated
in front of a table in a comfortable position. They completed
a protocol on a printed template at a comfortable speed. The
prefilled template was shown to the subjects; no restrictions
on the number of repeated syllables/words in tasks or their
heights were given. The signals were recorded at a 133 Hz
sampling rate using the Intuos 4 M (Wacom technology)
digitizing tablet and Wacom inking pen.

The protocol consists of the following eight tasks: Task 1
asks the user to draw, from inside out, an Archimedean spiral;
tasks 2, 3, and 4 asks the user to repetitively write a cursive
letter “1,” syllable ‘““le,” and trigram *les,” respectively;
tasks 5, 6, and 7 asks the user to repetitively write a simple
orthography and an easy syntax word, such that they are
written in one continuous movement; finally, task 8 requires
the user to write a longer sentence.

When the user was writing or drawing on the tablet
(Fig. 1), the application captured the horizontal and vertical
displacements of the pen tip in the x-axis, x (n) and the
y-axis, y (n), respectively. Furthermore, the on-surface/in-
air pen position information or status (touching/not-touching
tablet’s surface), sq (n), the altitude of the pen with respect
to the tablet’s surface, al (n), the pressure applied by the pen
tip, p (n) , the azimuth angle of the pen with respect to the
tablet’s surface, az (n) , and the signal’s timestamp, Ts, were
captured.

A. DATA AUGMENTATION

Since the training database is small and unbalanced, we aug-
ment the smaller class such that both are equal in size. Then,
we augment both classes to increase the training set.

VOLUME 9, 2021

Augmentation of the training data is performed as follows:

1. C,, = Identify the class with few samples.

2. N = Calculate the number of samples to compensate

for the different number of samples.

Randomly select N; of Cy,.

4. For each selected sample, calculate the new feature
vector by adding Gaussian random noise to the original
features.

»

FV, = FV, +a % GV

where FV,, is the feature vector of a random user, « is
a value less than 0.2, and GV a vector with Gaussian
random values. FV,, FV,,, and GV are vectors with
equal dimensions.

V. FEATURE EXTRACTION

The front-end used in this study is shown in Fig. 2. This
section describes the kinematic, statistics, spectral- and cep-
stral domain features used in the front-end. Definitions for
calculating these features are provided in the next subsections
and its graphical representation is shown in Fig. 3.

A. TEMPORAL AND KINEMATIC FEATURES
The row vector of temporal and kinematic features (KF') [34]
for task 7 and user u, applied to displacement, is defined as
follows:
T,u
TKF ey
=[S/ Fy By FU Fy" NCVT! NCA™", NCV ",
NCAT*, #71],

where,

dt*(n) = \/xm (n)* + y© (n)?, is the displacement,

S;" is the trajectory during handwriting divided by the
duration of writing,

F 1; Z = Zg:]:  (2n), this is .th.e on-air pen duration, .
Fy" =3 "y @ (2n+ 1), this is the on-paper pen duration,
< (i) is the duration of the stroke i; when i mod 2 = 0, the pen
is on- air, otherwise it is on the tablet surface,

F" = F["/T represents the F{"" normalized to writing
duration,

F}" = F5"/T represents the F,"" normalized to writing
duration,

#»T¥ is the ratio of time the pen spent in-air/on the tablet’s
surface,

NCV®* =1/(n—1) vaz_ll [v (i) — v(i + 1)| represents the
number of changes in velocity direction (The mean number
of local extrema of velocity),

NCA™™ =1/ (n—2) vaz_lz la (i) — a(i + 1) represents the
number of changes in acceleration direction (The mean num-
ber of local extrema of acceleration),

NCVI" = NCV®*/(T — 1) represents the NCV ™" relative
to writing duration,

NCAT* = NCA™™/(T — 2 x Ts) represents the NCA™"
relative to writing duration, Ts is the sampling time
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FIGURE 2. System Front-end mFCBF is the modified Fast Correlation-Based Filtering.

and T = spiral, letterl, syllable le, trigrammles,
wordl, word2, word3, sentence is the set of tasks to per-
form.

Then, the TKF row vector is the concatenation of TKF of
each task 7; mathematically shown below, using relational
algebra:

T

U [r=r Z&)]T
teT

We observe that to concatenate columns, we transpose the
row vector, then we append the resulting column vectors
using the union function. Finally, the row feature vector is
obtained by transposing the column vector.

TKFY =

B. STATISTICS FEATURES
The statistics are obtained from the kinematic and stroke
signals [39]. First, consider the set for task t and user u:

g"" () = {k" (), 57" ()},
where
n=1,...,T,
504 (n) is the stroke signal,
kD" (n) = {v* (n) , al" (n), ji;"(n)} is the set of kinematic
signals, applied to signal in set w™* (n),
wh (n) = {d™" (n),x"" (n), y"* (n) is the set containing
discrete, horizontal, and vertical displacements,
d™"(n) = \/va“ (n)? + yTou (n)?, is the discrete displace-
ment,
x©!" (n) is the horizontal displacement,
yU# (n) is the vertical displacement,
vt (n) = W”)+W, is the velocity applied to signals

in wh* (n),
ay*(n) = w, is the acceleration applied to
51gnals in wh" (n),
M) = M is the jerk applied to signal in

T “(n),and T = splml letterl, syllable le, trigrammles,
word1, word2, word3, sentence is the set of tasks per-
formed for each user.

Statistics features row vector [Drotar et al., 2014; 2016] for
task t and user u, is defined as follows:

141604

SFy" = [Bg, o, M5t

where

n is the row vector of basic statistics features,

sm; is the row vector of mean features and

M;( ) is the row vector of momentum features.

They are all applied to all signals in ¢®" ().

The row vector of basic statistics features is defined as
follows:

o)
n
u

oTu

B;u — [g ’gvr u,ér,u’ér,u’gt,u],

where

T

u
¢ is the range,
g ™" is the median,
47" is the mode,

gee = (]

_ Iz
g”")) is the standard
deviation

(g™ () —
? % is the outlier robust range (percentile 99th—percentile
1st); all above definitions applied to all signals in set ¢ ™% (n),
and

T is the set of tasks to perform.

The row vector of mean features is defined as follows:

tri

mr,u_ ~T,u =0:U T,u
g - }g sg 7g £

where
gt =1/nY02, I' 44 (n) is the arithmetic mean,

—r u I/n .
= (Hz Ak (n)) is the geometric mean,

tri tri

—_— —_—
™" = Ug/"Vi = 5,10,20,30,40,50, is the set of
trimmed means for each of the values in i of g™* (n); the
trimmed mean is the mean after removing the outliers. For
example, suppose gf " has n values, the trimmed mean is the
mean of gf excluding the highest and lowest k data values,
where k = nx (i/100) /2.; all above definitions applies to all
signals in g** (n), and

T (asdefined).
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The row vector of momentum statistics features is defined
as follows:
qua per mom
T, U ,-/\/-/T\ T,u T,u
Mgt =1 g™ gt gt RV,

where

—_— )
4° is the row vector of quartiles (Q3 = 25(lower, Q| =

75/upper)

per

Ugf “Vi=1,5, 10, 20, 30, 90, 95, 100, is the row

vector of percentils,
mom mom

=U gr " Vi = 3th, 4th, Sth, 6th, is the row vector of
zmoments
AT — 1/04 ZH=T( T.u _ st 174 .
= ( o1 (%" (n) — g )) , 1s the kur-
tosis; all above definitions applies to all signals in
%" (n), and T = {spiral, letterl, syllablele, trigrammles,
word 1, word?2, word3, sentence
Then, the row vector of the statistics feature for user U,
using relational algebra, is shown below:

T
- |:Ure7’ UQEgC(n) [SFéu]T}

C. SPECTRAL-DOMAIN FEATURES
Spectral-domain feature row vectors for task t and user u,
applied to signals is s™* (n), is defined as follows:

SDFF" = [FBCC!" (1), ..., FBCCI" (M)]

where

LEFB®" (m) = filterbank{E;"" (k)}, form=1,2,..., M,
0=1,2,..M

ESM (k) = logy <|ST’” (k)|2> is the log energy spectrum,

STy = YN sty e T for k = 0,1,...,K,
is the discrete Fourier transform of the signal and
sT(n) = x" (n), ytt (), pTt (n),
x%% (n) is the horizontal displacement,
y&# (n) is the vertical displacement, and
p©" (n) is the pressure signal.

Then, the row vector of the spectrum-domain features is
the concatenation of the SDF of each of the task 7 for each
signal in s** (n):

SDFY = [UreTUSes [SDFZ"] ]

D. CEPSTRAL DOMAIN FEATURES
Cepstral domain feature row vectors for task 7 and user u,
applied to signals in s™* (n), is defined as follows:

CDFJ" = [LEFBY" (1), ..., LEFBY" (M)]
where
M-1 -
FBCCI" (q) = Z LEFB™" (m) e~ N ™,
m=0
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Forg=1,2,...,0.

M is the number of Filterbanks, Q = M /2 is the number of
filterbanks, in the number of filterbanks divided by 2.

Then, the row vector of the cepstral domain features for
user U, again using relational algebra, is shown below:

o =[U, oy U e )|

E. USERS FEATURE
The row feature vector FV, of each user, using relational
algebra is shown as follows:

T
Fv = [[rkr]" v [P u[spF ] ucr ']
Alternatively, we define the disease state for each user as

follows:

0, Normal
u —_—
P {1 above Normal 107 @lw =1...U,

The row vector relating features to the emotional state is
T

U [D“]T]

The data frame is defined as the union FV D" of all users,

and can be expressed using relational algebra notation as
follows:

Fvp = [[Fve]"

U
FvD = JFVvD".
u=1
In this dataframe, the rows represent the number of users
and the columns represent the features and its users’ disease
state.

V1. FEATURE SELECTION

Feature selection is a popular and common premodeling
step in machine learning, especially in high-dimensional
databases. Irrelevant features decrease the accuracy of data
models because models also learn irrelevant information.
Thus, selecting the right number of features increases the
performance of the machine learning method.

Several methods for selecting features exist. All of them
aim to obtain the best features and most do so by employing
statistical tools with certain correlations to selection. The
major difference between these tools is the selection criterion.
Each patient has a considerable number of features, so we
reduce the dimension of the number of features using a
modified fast correlation-based filtering (FCBF) [40].

FCBF is based on two correlation factors: correlation
between each feature and output and correlations among
major difference between these tools is the selection criterion.

Each patient has a considerable number of features, so we
reduce the dimension of the number of features using a mod-
ified fast correlation-based filtering (FCBF) [40].

FCBEF selection is based on two steps. In the first step,
the selected features are the ones whose correlation with
the output are higher than a threshold. In the second step,

141605



lEEEACC@SS J. A. Nolazco-Flores et al.: Exploiting Spectral and Cepstral Handwriting Features on Diagnosing Parkinson’s Disease

) st o = —
speed || > = o
FE, ) S 2,
in-air time } - > — jay
F, {1)1] s 7
Normalizing in-air time  [ete———" o 3 e
F3 )L K,
on-surface time } 2_ i > N Lg
| F3* (1)1 = =
Normalizing on-Surface time & >
NCVTY, {1}[1
number of changes in velocity direction : ! )[7
| { NCV;™™, {1){1
NCV relative
2 NCA™, {1}[1
number of changes in acceleration direction |k
| q NCAZY, {1)[1]
NCA relative || >
7T {1)1]
(in-air)/on-surface) } .
gn| S m
=
= ~ ~
= g aonlf | @ ~
) 3 =N
= g oyl | Z = el
& | — —_ on
g 1 g™, {10}{1] 12 & S
& StaD ‘ - o X I
- = — = & 3
Velocity ; 3 — g™, {10}[1] o] — N =
Z = & = — = R = *
= = P = _ e -~ ——
B = = NG — g™ o M = Sy ® e @
N B = o B % AN 4 *
3 & ~ S s ullvy A [ee)
é 2 - = L =
Y (n) > &5 tri S =
Aceleration g*,,{10}(6] & R hand
> s
= qua - = =~
d™¥(n) 5 g%%, {10}{2] pum .;._‘ R
: g .
(IN] = quartiles —7 3 NN
= gu o8l | =
S 37
Jerk __mom b )
g a0l | =
— =
[
TU —
57 ) ey 47, {10}(1] i -~ 0
& I
=
I =
— S = *
X, i * ™
—
*
X, o™ < 0, @
~ - ~ —~ [t}
g o~ g = ~
—~ — & =
~ — 3 - —
~ N ~ 3 -
S & i A
s™(n), [N]{3} 3 3 & U
’ 2 5 SDE;"™, {3}[M Q Q
3 3 5 st s s
DFT > Energy =Ppf Filterbank A:U »
™ () —
o
) g
=~ [
I >
[»g *
CDE™, {3}[0] * o
= X
fn 2,
D Ez U
3 —
o -
B &
2 )
© )

FIGURE 3. Feature Processing. Notation: {} indicates the number of members in the set; [] indicates the vector dimension of each element of the set.
Black vertical rectangles indicate that the output is a set of the inputs; no-filled vertical rectangles indicate the outputs is a column concatenation of
the inputs vectors. The processing of the horizontal rectangles is made for each element of the input set, creating an output of the same dimension
as the input. In this figure, we assume a filterbanks dimension of 28 (M = 28) and cepstral coefficients number of 14 (Q = 14).

it takes the features of the first steps and selectes the ones
with correlation lower than a threshold. In our modified
version [36], mFCBF differs of the original FCBF at step 35,
where the selected feature is the one having higher correla-
tion with the output. Algorithm 1 shows a pseudo-code for
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the mFCBF process. mFCBF algorithm receives, as inputs,
a dataframe and thresholds oTh and iTh. oTh is used to set
the lower correlation value of each of the selected features
and the output; iTh is used to set the higher correlation value
between features. Using the values of oTh and iTh, we can
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Algorithm 1 The mFCBF Algorithm Receives the Users Fea-
ture Matrix (OF), Minimum Correlation Threshold (oTh),
and the Maximum Correlation Threshold (iTh) and Returns
the Selected Set of Features

1: function mFCBF(O, oTh, iTh)

2: Calculate corr(O)

3: Ogmp < Select columns whose output correlation is >
oTh

4: Calculate corr(Ogmp)

5: 0Th,ml <« Select columns whose correlation with the
input is < iTh and with the highest correlation with the
output.

6: return (@Th,m,)

7: end function

find the right features to maximize the performance of the
machine learning method. This operation is expressed as
follows:

FVDorn,ith = mFCBF oy ith (FVD) .

Note that in F/VTDOT;,,,-T;, is a 2-D array, where one dimen-
sion represents the number of users and the other, the number
of selected features.

Feature selectivity is controlled with oTh and iTh values.
For example, given 370 user feature vectors, then for iTh =
0.15 and oTh = 0.7, the number of selected features reduce
to 26, 28, and 20 for the depression, anxiety, stress states,
respectively.

One way to visualize the relevance of features in improv-
ing performance is to use RadViz [41]. In RadViz, each
data frame sample is represented inside the circle using the
value in each series according to a physical metaphor. Each
point is attached to each characteristic with a force propor-
tional to the value the sample takes in the corresponding
series. This implies that the final position is the equilib-
rium position between all forces representing the character-
istics. Figs. 2 and 3 show the RadViz of the 2658 features
and the selected 47 features, respectively. RadViz shows
the dominant proportional values (DPV) of the features.
In the graph, the higher cloud dispersion means higher
DPYV, whereas, a higher DPV means that features are easily
exploited to improve the classification. Furthermore, these
47 features have higher DPVs than the complete set of
2658 features.

Vil. FRONT-END HYPERPARAMETERS
Spectral-domain features (SDF) is a function of the filter-
bank bandwidth (fbbw), the bandwidth of the filters on the
filterbank (fbw), the filterbank’s initial frequency (if), and
the overlap between filters on the filterbank (ov).
Conversely, features selection (FS) depends on the
feature-output-correlation threshold (oTh) and the intra-
feature correlation threshold (iTh).
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FIGURE 4. RadViz of the 2658 features. We can observe that there are no
features with dominant proportional values (DPVs).
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FIGURE 5. RadViz of 47 selected features. Note that selecting features
increases the number of features with dominant proportional values
(DPVs).

Therefore, the parameters for the final vector of features
are

(fbbw, fow, if , ov, oTh, iTh)

For practical, the range of values for each parameter is
defined as follows:
iThange = [0.2 — 1],
0Thgpge = [0 —0.20],
JObW,4pge = [075], in Hz,
JoW,ange = 10.5 = 3], in Hz;
if range = [0.5] and

OVrange = [0] in %.

A different set of features is selected for each combination
of values. More so, each set of features produces a corre-
sponding performance accuracy. Since one of these combi-
nations is optimal, we find the combination that maximizes
the ML accuracy.

Since augmentation of the training data, user selection, and
Gaussian noise is random, we are unaware of which users
and random sequences generate a better model. Therefore,
we train and test the model for different sets of users and
different random sequences, and we select the maximum
accuracy.

VIIl. RESULTS

The Leave-Percentage-Out (LPO) was used for testing. Here,
the data model is trained with all database registers but a per-
centage, and the test is performed on registers that were out.
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TABLE 3. Accuracy (%) results for different sets of coefficients
with(FS)/without(NO_FS) feature selection applying mFCBF as features
selection.

Features NO FS FS
KF 80 88.57
KF U SF 80 94.28
KF U SFU SDF 82.85 97.14
KFU SFuU SDFU CDF 88.57 98.57

This was repeated until all possibilities were checked, then,
we averaged the accuracy of all tests. In our experiments,
we leave the 15% out.

We sample different filterbank’s hyperparameters as
follows:

JobW, e = 15,20, ...50], in Hz,
TPWiange = 10.2,0.3,, ..., 1.0],
firange = 10.5] and
OVrange = [0].
and, the mFCBF hyperparameters (o7h and iTh) are given as
follows:

OTh e = 10,0.02,0.04,0.06, ..., 0.18,0.20],
iTh yge = 10.2,0.30, ..., 1.0],

Therefore, we find the combination of this sample space
that maximizes ML accuracy.

Table 3 shows the different accuracies for different feature
sets. The accuracy results for TKF, when using feature selec-
tion or not, are 88.87% and 80%, respectively. The accuracy
results for concatenating SF' and using either feature selection
or not are 94.28% and 80%, respectively.

From these two experiments, we find that adding statis-
tics feature when combined with TKF improves the result
accuracy.

Table 3 shows that the accuracy of the results when con-
catenating SDF using either feature selection or not are
97.14% and 82.85%, respectively. The last accuracy result is
for concatenating CDF using either feature selection or not,
are 98.57% and 88.57%, respectively.

The training data for all experiments were augmented by
80%, and the amplitude of the random Gaussian («) was set
to 0.2.

IX. CONCLUSION AND FUTURE WORK
We applied spectral and cepstral features on Parkinson’s
disease detection. Although spectral and cepstral features
have been successfully applied for emotion detection, here,
we concatenate them with kinetic and statistical features.
Similar features were used in [52] without the filterbank,
thereby providing the flexibility for changing filterbank’s
bandwidth, filterbank’s filters bandwidth, filterbank’s filters
overlapping, and filterbank’s initial frequency to improve
performance.

141608

As the first step, we calculated TKF using the displacement
signals; SF using displacement, and horizontal and vertical
displacement; the SDF and CDF from the displacement and
the horizontal and vertical displacement, and pressure signals.

Since the employed dataset (PaHaW) contains 37 PD
patients and 38 HC subjects, then as a second step, we aug-
mented the smaller class of the training set such that both are
equal in size; next, we augment both classes of the training
data by randomly selecting 80% of the training patient’s data
and added random Gaussian noise in all augmentations. For
the third step, we selected the most relevant features using
mFCBF method. Finally, autoML was employed to train and
test more than ten plain and ensembled classifiers.

Experimental results show that adding spectral and cep-
stral features to the kinematics and statistics features highly
improves the classification accuracy, reaching a combined
classification accuracy of 98.57%. This result shows that our
proposed model outperforms the best state-of-the-art result,
which sits at 97.62%. Moreover, the state-of-the-art model
has higher computational complexity and is required to train
204,060 parameters model for one day using an NVIDIA
GTX 1080 GPU of 8 GB.
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